ﻻ يوجد ملخص باللغة العربية
Hybrid semiconducting nanowire devices combining epitaxial superconductor and ferromagnetic insulator layers have been recently explored experimentally as an alternative platform for topological superconductivity at zero applied magnetic field. In this proof-of-principle work we show that the topological regime can be reached in actual devices depending on some geometrical constraints. To this end, we perform numerical simulations of InAs wires in which we explicitly include the superconducting Al and magnetic EuS shells, as well as the interaction with the electrostatic environment at a self-consistent mean-field level. Our calculations show that both the magnetic and the superconducting proximity effects on the nanowire can be tuned by nearby gates thanks to their ability to move the wavefunction across the wire section. We find that the topological phase is achieved in significant portions of the phase diagram only in configurations where the Al and EuS layers overlap on some wire facet, due to the rather local direct induced spin polarization and the appearance of an extra indirect exchange field through the superconductor. While of obvious relevance for the explanation of recent experiments, tunable proximity effects are of interest in the broader field of superconducting spintronics.
We report transport measurements and tunneling spectroscopy in hybrid nanowires with epitaxial layers of superconducting Al and the ferromagnetic insulator EuS, grown on semiconducting InAs nanowires. In devices where the Al and EuS covered facets ov
Three-dimensional topological insulator (TI) nanowires with quantized surface subband spectra are studied as a main component of Majorana bound states (MBS) devices. However, such wires are known to have large concentration $N sim 10^{19}$ cm$^{-3}$
One-dimensional systems proximity-coupled to a superconductor can be driven into a topological superconducting phase by an external magnetic field. Here, we investigate the effect of vortices created by the magnetic field in a type-II superconductor
Topological insulators (TI) are bulk insulators that possess robust chiral conducting states along their interfaces with normal insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which conventional pro
Finding a clear signature of topological superconductivity in transport experiments remains an outstanding challenge. In this work, we propose exploiting the unique properties of three-dimensional topological insulator nanowires to generate a normal-