ترغب بنشر مسار تعليمي؟ اضغط هنا

Proximity Induced Superconductivity in CdTe-HgTe Core-Shell Nanowires

125   0   0.0 ( 0 )
 نشر من قبل Jan Hajer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter we report on proximity superconductivity induced in CdTe-HgTe core-shell nanowires, a quasi-one-dimensional heterostructure of the topological insulator HgTe. We demonstrate a Josephson supercurrent in our nanowires contacted with superconducting Al leads. The observation of a sizable $I_c R_n$ product, a positive excess current and multiple Andreev reflections up to fourth order further indicate a high interface quality of the junctions.

قيم البحث

اقرأ أيضاً

We report an experimental study of proximity effect-induced superconductivity in crystalline Cu and Co nanowires and a nanogranular Co nanowire structure in contact with a superconducting W floating electrode which we call inducer. The nanowires were grown by electrochemical deposition in heavy-ion-track etched polycarbonate templates. The nanogranular Co structure was fabricated by focused electron beam induced deposition (FEBID), while the amorphous W inducer was obtained by focused ion beam induced deposition (FIBID). For electrical resistance measurements up to three pairs of Pt voltage leads were deposited by FIBID at different distances beside the inner inducer electrode, thus allowing us to probe the proximity effect over a length of 2-12 $mu$m. Relative $R(T)$ drops of the same order of magnitude have been observed for the Co and Cu nanowires when sweeping the temperature below 5.2 K ($T_c$ of the FIBID-deposited W inducer). By contrast, relative $R(T)$ drops were found to be an order of magnitude smaller for the nanogranular Co nanowire structure. Our analysis of the resistance data shows that the superconducting proximity length in crystalline Cu and Co is about 1 $mu$m at low temperatures, attesting to a long-range proximity effect in the case of ferromagnetic Co. Moreover, this long-range proximity effect has been revealed to be insusceptible to magnetic fields up to 11 T, which is indicative of spin-triplet pairing. At the same time, in the nanogranular Co structure proximity-induced superconductivity is strongly suppressed due to the dominating Cooper pair scattering caused by the intrinsic microstructure of the FEBID deposit.
73 - M. Kessel 2017
We present results on the growth of CdTe-HgTe core-shell nanowires, a realization of a quasi one-dimensional heterostructure of the topological insulator HgTe. The growth is a two step process consisting of the growth of single crystalline zinc blend e CdTe nanowires with the vapor-liquid-solid method and the overgrowth of these wires with HgTe such that a closed shell is formed around the CdTe core structure. The CdTe wire growth is monitored by RHEED allowing us to infer information on the crystal properties from the electron diffraction pattern. This information is used to find and control the optimal growth temperature. High quality single crystal CdTe nanowires grow with a preferred orientation. For the growth of the conductive HgTe shell structure we find that the supplied Hg:Te ratio is the crucial parameter to facilitate growth on all surface facets.
We study proximity-induced superconductivity in gold nanowires as a function of the length of the nanowire, magnetic field, and excitation current. Short nanowires exhibit a sharp superconducting transition, whereas long nanowires show nonzero resist ance. At intermediate lengths, however, we observe two sharp transitions; the normal and superconducting regions are separated by what we call the mini-gap phase. Additionally, we detect periodic oscillations in the differential magnetoresistance. We provide a theoretical model for the mini-gap phase as well as the periodic oscillations in terms of the coexistence of proximity-induced superconductivity with a normal region near the center of the wire, created either by temperature or application of a magnetic field.
We consider a new model system supporting Majorana zero modes based on semiconductor nanowires with a full superconducting shell. We demonstrate that, in the presence of spin-orbit coupling in the semiconductor induced by a radial electric field, the winding of the superconducting order parameter leads to a topological phase supporting Majorana zero modes. The topological phase persists over a large range of chemical potentials and can be induced by a predictable and weak magnetic field piercing the cylinder. The system can be readily realized in semiconductor nanowires covered by a full superconducting shell, opening a pathway for realizing topological quantum computing proposals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا