ﻻ يوجد ملخص باللغة العربية
Coupling a normal metal wire to a superconductor induces an excitation gap in the normal metal. In the absence of disorder, the induced excitation gap is strongly suppressed by finite-size effects if the thickness of the superconductor is much smaller than the thickness of the normal metal and the superconducting coherence length. We show that the presence of disorder, either in the bulk or at the exposed surface of the superconductor, significantly enhances the magnitude of the induced gap, such that it approaches the superconducting gap in the limit of strong disorder. We also discuss the shift of energy bands inside the normal-metal wire as a result of the coupling to the superconducting shell.
We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, T_c, can reach several Kelvins at the experimentally accessible ra
Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topolo
The proximity effect (PE) between superconductor and confined electrons can induce the effective pairing phenomena of electrons in nanowire or quantum dot (QD). Through interpreting the PE as an exchange of virtually quasi-excitation in a largely gap
Topological superconductivity is a state of matter that can host Majorana modes, the building blocks of a topological quantum computer. Many experimental platforms predicted to show such a topological state rely on proximity-induced superconductivity