ﻻ يوجد ملخص باللغة العربية
The Voronoi diagrams are an important tool having theoretical and practical applications in a large number of fields. We present a new procedure, implemented as a set of CUDA kernels, which detects, in a general and efficient way, topological changes in case of dynamic Voronoi diagrams whose generating points move in time. The solution that we provide has been originally developed to identify plastic events during simulations of soft-glassy materials based on a Lattice Boltzmann model with frustrated-short range attractive and mid/long-range repulsive-interactions. Along with the description of our approach, we present also some preliminary physics results.
We present a Bayesian Voronoi image reconstruction technique (VIR) for interferometric data. Bayesian analysis applied to the inverse problem allows us to derive the a-posteriori probability of a novel parameterization of interferometric images. We u
We study the amortized number of combinatorial changes (edge insertions and removals) needed to update the graph structure of the Voronoi diagram $mathcal{V}(S)$ (and several variants thereof) of a set $S$ of $n$ sites in the plane as sites are added
We present an efficient open-source implementation of the multiparticle collision dynamics (MPCD) algorithm that scales to run on hundreds of graphics processing units (GPUs). We especially focus on optimizations for modern GPU architectures and comm
In this paper we initiate the study of tropical Voronoi diagrams. We start out with investigating bisectors of finitely many points with respect to arbitrary polyhedral norms. For this more general scenario we show that bisectors of three points are
Given a tesselation of the plane, defined by a planar straight-line graph $G$, we want to find a minimal set $S$ of points in the plane, such that the Voronoi diagram associated with $S$ fits $G$. This is the Generalized Inverse Voronoi Problem (GIV