ﻻ يوجد ملخص باللغة العربية
Given a tesselation of the plane, defined by a planar straight-line graph $G$, we want to find a minimal set $S$ of points in the plane, such that the Voronoi diagram associated with $S$ fits $G$. This is the Generalized Inverse Voronoi Problem (GIVP), defined in cite{Trin07} and rediscovered recently in cite{Baner12}. Here we give an algorithm that solves this problem with a number of points that is linear in the size of $G$, assuming that the smallest angle in $G$ is constant.
A data structure is presented that explicitly maintains the graph of a Voronoi diagram of $N$ point sites in the plane or the dual graph of a convex hull of points in three dimensions while allowing insertions of new sites/points. Our structure suppo
We study the amortized number of combinatorial changes (edge insertions and removals) needed to update the graph structure of the Voronoi diagram $mathcal{V}(S)$ (and several variants thereof) of a set $S$ of $n$ sites in the plane as sites are added
We describe a new data structure for dynamic nearest neighbor queries in the plane with respect to a general family of distance functions. These include $L_p$-norms and additively weighted Euclidean distances. Our data structure supports general (con
The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many varian
We study the geodesic Voronoi diagram of a set $S$ of $n$ linearly moving sites inside a static simple polygon $P$ with $m$ vertices. We identify all events where the structure of the Voronoi diagram changes, bound the number of such events, and then