ﻻ يوجد ملخص باللغة العربية
We present a Bayesian Voronoi image reconstruction technique (VIR) for interferometric data. Bayesian analysis applied to the inverse problem allows us to derive the a-posteriori probability of a novel parameterization of interferometric images. We use a variable Voronoi diagram as our model in place of the usual fixed pixel grid. A quantization of the intensity field allows us to calculate the likelihood function and a-priori probabilities. The Voronoi image is optimized including the number of polygons as free parameters. We apply our algorithm to deconvolve simulated interferometric data. Residuals, restored images and chi^2 values are used to compare our reconstructions with fixed grid models. VIR has the advantage of modeling the image with few parameters, obtaining a better image from a Bayesian point of view.
We study the amortized number of combinatorial changes (edge insertions and removals) needed to update the graph structure of the Voronoi diagram $mathcal{V}(S)$ (and several variants thereof) of a set $S$ of $n$ sites in the plane as sites are added
The Voronoi diagrams are an important tool having theoretical and practical applications in a large number of fields. We present a new procedure, implemented as a set of CUDA kernels, which detects, in a general and efficient way, topological changes
In this paper we initiate the study of tropical Voronoi diagrams. We start out with investigating bisectors of finitely many points with respect to arbitrary polyhedral norms. For this more general scenario we show that bisectors of three points are
Torsional modes within a complex molecule containing various functional groups are often strongly coupled so that the harmonic approximation and one-dimensional torsional treatment are inaccurate to evaluate their partition functions. A family of mul
Given a tesselation of the plane, defined by a planar straight-line graph $G$, we want to find a minimal set $S$ of points in the plane, such that the Voronoi diagram associated with $S$ fits $G$. This is the Generalized Inverse Voronoi Problem (GIV