ﻻ يوجد ملخص باللغة العربية
In this paper we initiate the study of tropical Voronoi diagrams. We start out with investigating bisectors of finitely many points with respect to arbitrary polyhedral norms. For this more general scenario we show that bisectors of three points are homeomorphic to a non-empty open subset of Euclidean space, provided that certain degenerate cases are excluded. Specializing our results to tropical bisectors then yields structural results and algorithms for tropical Voronoi diagrams.
We characterize the topological configurations of points and lines that may arise when placing n points on a circle and drawing the n perpendicular bisectors of the sides of the corresponding convex cyclic n-gon. We also provide exact and asymptotic
Tropical curves in $mathbb{R}^2$ correspond to metric planar graphs but not all planar graphs arise in this way. We describe several new classes of graphs which cannot occur. For instance, this yields a full combinatorial characterization of the tropically planar graphs of genus at most five.
We study the amortized number of combinatorial changes (edge insertions and removals) needed to update the graph structure of the Voronoi diagram $mathcal{V}(S)$ (and several variants thereof) of a set $S$ of $n$ sites in the plane as sites are added
The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many varian
After endowing the space of diagrams of probability spaces with an entropy distance, we study its large-scale geometry by identifying the asymptotic cone as a closed convex cone in a Banach space. We call this cone the tropical cone, and its elements