ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre-DECIGO can get the smoking gun to decide the astrophysical or cosmological origin of GW150914-like binary black holes

52   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Nakano
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Pre-DECIGO consists of three spacecraft arranged in an equilateral triangle with 100km arm lengths orbiting 2000km above the surface of the earth. It is hoped that the launch date will be in the late 2020s. Pre-DECIGO has one clear target: binary black holes (BBHs) like GW150914 and GW151226. Pre-DECIGO can detect $sim 30M_odot-30M_odot$ BBH mergers up to redshift $zsim 30$. The cumulative event rate is $sim 1.8times 10^{5},{rm events~yr^{-1}}$ in the Pop III origin model of BBHs like GW150914, and it saturates at $zsim 10$, while in the primordial BBH (PBBH) model, the cumulative event rate is $ sim 3times 10^{4},{rm events~ yr^{-1}}$ at $z=30$ even if only $0.1%$ of the dark matter consists of PBHs, and it is still increasing at $z=30$. In the Pop I/II model of BBHs, the cumulative event rate is $(3-10)times10^{5},{rm events~ yr^{-1}}$ and it saturates at $z sim 6$. We present the requirements on orbit accuracy, drag free techniques, laser power, frequency stability, and interferometer test mass. For BBHs like GW150914 at 1Gpc, SNR$sim 90$ is achieved with the definition of Pre-DECIGO in the $0.01-100$Hz band. Pre-DECIGO can measure the mass spectrum and the $z$-dependence of the merger rate to distinguish various models of BBHs like GW150914. Pre-DECIGO can also predict the direction of BBHs at $z=0.1$ with an accuracy of $sim 0.3,{rm deg}^2$ and a merging time accuracy of $sim 1$s at about a day before the merger so that ground-based GW detectors further developed at that time as well as electromagnetic follow-up observations can prepare for the detection of merger in advance. For intermediate mass BBHs at a large redshift $z > 10$, the QNM frequency after the merger can be within the Pre-DECIGO band so that the ringing tail can also be detectable to confirm the Einstein theory of general relativity with SNR$sim 35$. [abridged]



قيم البحث

اقرأ أيضاً

The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In th is paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.
Two of the dominant channels to produce the black-hole binary mergers observed by LIGO and Virgo are believed to be the isolated evolution of stellar binaries in the field and dynamical formation in star clusters. Their relative efficiency can be cha racterized by a mixing fraction. Pair instabilities prevent stellar collapse from generating black holes more massive than about $45 M_odot$. This mass gap only applies to the field formation scenario, and it can be filled by repeated mergers in clusters. A similar reasoning applies to the binarys effective spin. If black holes are born slowly rotating, the high-spin portion of the parameter space (the spin gap) can only be populated by black hole binaries that were assembled dynamically. Using a semianalytical cluster model, we show that future gravitational-wave events in either the mass gap, the spin gap, or both can be leveraged to infer the mixing fraction between the field and cluster formation channels.
We propose a new scenario for the evolution of a binary of primordial black holes (PBHs). We consider a dynamical friction by ambient dark matter, scattering of dark matter particles with a highly eccentric orbit besides the standard two-body relaxat ion process to refill the loss cone, and interaction between the binary and a circumbinary disk, assuming that PBHs do not constitute the bulk of dark matter. Binary PBHs lose the energy and angular momentum by these processes, which could be sufficiently efficient for a typical configuration. Such a binary coalesces due to the gravitational wave emission in a time scale much shorter than the age of the universe. We estimate the density parameter of the resultant gravitational wave background. Astrophysical implication concerning the formation of intermediate-mass to supermassive black holes is also discussed.
A transient gravitational-wave signal, GW150914, was identified in the twin Advanced LIGO detectors on September 14, 2015 at 09:50:45 UTC. To assess the implications of this discovery, the detectors remained in operation with unchanged configurations over a period of 39 d around the time of the signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false alarm rate (FAR) of $< 4.9 times 10^{-6} , mathrm{yr}^{-1}$, yielding a $p$-value for GW150914 of $< 2 times 10^{-7}$. Parameter estimation followup on this trigger identifies its source as a binary black hole (BBH) merger with component masses $(m_1, m_2) = left(36^{+5}_{-4},29^{+4}_{-4}right) , M_odot$ at redshift $z = 0.09^{+0.03}_{-0.04}$ (median and 90% credible range). Here we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the Universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between $2$--$53 , mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ (comoving frame). Incorporating all search triggers that pass a much lower threshold while accounting for the uncertainty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from $13$--$600 , mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ depending on assumptions about the BBH mass distribution. All together, our various rate estimates fall in the conservative range $2$--$600 , mathrm{Gpc}^{-3} mathrm{yr}^{-1}$.
The gravitational-wave signal GW190521 is consistent with a binary black hole merger source at redshift 0.8 with unusually high component masses, $85^{+21}_{-14},M_{odot}$ and $66^{+17}_{-18},M_{odot}$, compared to previously reported events, and sho ws mild evidence for spin-induced orbital precession. The primary falls in the mass gap predicted by (pulsational) pair-instability supernova theory, in the approximate range $65 - 120,M_{odot}$. The probability that at least one of the black holes in GW190521 is in that range is 99.0%. The final mass of the merger $(142^{+28}_{-16},M_{odot})$ classifies it as an intermediate-mass black hole. Under the assumption of a quasi-circular binary black hole coalescence, we detail the physical properties of GW190521s source binary and its post-merger remnant, including component masses and spin vectors. Three different waveform models, as well as direct comparison to numerical solutions of general relativity, yield consistent estimates of these properties. Tests of strong-field general relativity targeting the merger-ringdown stages of coalescence indicate consistency of the observed signal with theoretical predictions. We estimate the merger rate of similar systems to be $0.13^{+0.30}_{-0.11},{rm Gpc}^{-3},rm{yr}^{-1}$. We discuss the astrophysical implications of GW190521 for stellar collapse, and for the possible formation of black holes in the pair-instability mass gap through various channels: via (multiple) stellar coalescence, or via hierarchical merger of lower-mass black holes in star clusters or in active galactic nuclei. We find it to be unlikely that GW190521 is a strongly lensed signal of a lower-mass black hole binary merger. We also discuss more exotic possible sources for GW190521, including a highly eccentric black hole binary, or a primordial black hole binary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا