ﻻ يوجد ملخص باللغة العربية
A transient gravitational-wave signal, GW150914, was identified in the twin Advanced LIGO detectors on September 14, 2015 at 09:50:45 UTC. To assess the implications of this discovery, the detectors remained in operation with unchanged configurations over a period of 39 d around the time of the signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false alarm rate (FAR) of $< 4.9 times 10^{-6} , mathrm{yr}^{-1}$, yielding a $p$-value for GW150914 of $< 2 times 10^{-7}$. Parameter estimation followup on this trigger identifies its source as a binary black hole (BBH) merger with component masses $(m_1, m_2) = left(36^{+5}_{-4},29^{+4}_{-4}right) , M_odot$ at redshift $z = 0.09^{+0.03}_{-0.04}$ (median and 90% credible range). Here we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the Universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between $2$--$53 , mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ (comoving frame). Incorporating all search triggers that pass a much lower threshold while accounting for the uncertainty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from $13$--$600 , mathrm{Gpc}^{-3} mathrm{yr}^{-1}$ depending on assumptions about the BBH mass distribution. All together, our various rate estimates fall in the conservative range $2$--$600 , mathrm{Gpc}^{-3} mathrm{yr}^{-1}$.
Supplemental information for a Letter reporting the rate of binary black hole (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient gravitational wave signal GW150914. In that work we reported var
We present results on the mass, spin, and redshift distributions with phenomenological population models using the ten binary black hole mergers detected in the first and second observing runs completed by Advanced LIGO and Advanced Virgo. We constra
Fermi-Gamma-ray Burst Monitor observed a 1 s long gamma-ray signal (GW150914-GBM) starting 0.4 s after the first gravitational wave detection from the binary black hole merger GW150914. GW150914-GBM is consistent with a short gamma-ray burst origin;
We study the evolution of the binary black hole (BBH) mass distribution across cosmic time. The second gravitational-wave transient catalog (GWTC-2) from LIGO/Virgo contains BBH events out to redshifts $z sim 1$, with component masses in the range $s
We present results from a controlled numerical experiment investigating the effect of stellar density gas on the coalescence of binary black holes (BBHs) and the resulting gravitational waves (GWs). This investigation is motivated by the proposed ste