ترغب بنشر مسار تعليمي؟ اضغط هنا

Hypervelocity binary stars: smoking gun of massive binary black holes

367   0   0.0 ( 0 )
 نشر من قبل Qingjuan Yu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In this paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.

قيم البحث

اقرأ أيضاً

Pre-DECIGO consists of three spacecraft arranged in an equilateral triangle with 100km arm lengths orbiting 2000km above the surface of the earth. It is hoped that the launch date will be in the late 2020s. Pre-DECIGO has one clear target: binary b lack holes (BBHs) like GW150914 and GW151226. Pre-DECIGO can detect $sim 30M_odot-30M_odot$ BBH mergers up to redshift $zsim 30$. The cumulative event rate is $sim 1.8times 10^{5},{rm events~yr^{-1}}$ in the Pop III origin model of BBHs like GW150914, and it saturates at $zsim 10$, while in the primordial BBH (PBBH) model, the cumulative event rate is $ sim 3times 10^{4},{rm events~ yr^{-1}}$ at $z=30$ even if only $0.1%$ of the dark matter consists of PBHs, and it is still increasing at $z=30$. In the Pop I/II model of BBHs, the cumulative event rate is $(3-10)times10^{5},{rm events~ yr^{-1}}$ and it saturates at $z sim 6$. We present the requirements on orbit accuracy, drag free techniques, laser power, frequency stability, and interferometer test mass. For BBHs like GW150914 at 1Gpc, SNR$sim 90$ is achieved with the definition of Pre-DECIGO in the $0.01-100$Hz band. Pre-DECIGO can measure the mass spectrum and the $z$-dependence of the merger rate to distinguish various models of BBHs like GW150914. Pre-DECIGO can also predict the direction of BBHs at $z=0.1$ with an accuracy of $sim 0.3,{rm deg}^2$ and a merging time accuracy of $sim 1$s at about a day before the merger so that ground-based GW detectors further developed at that time as well as electromagnetic follow-up observations can prepare for the detection of merger in advance. For intermediate mass BBHs at a large redshift $z > 10$, the QNM frequency after the merger can be within the Pre-DECIGO band so that the ringing tail can also be detectable to confirm the Einstein theory of general relativity with SNR$sim 35$. [abridged]
In this paper we consider a scenario where the currently observed hypervelocity stars in our Galaxy have been ejected from the Galactic center as a result of dynamical interactions with an intermediate-mass black hole (IMBH) orbiting the central supe rmassive black hole (SMBH). By performing 3-body scattering experiments, we calculate the distribution of the ejected stars velocities given various parameters of the IMBH-SMBH binary: IMBH mass, semimajor axis and eccentricity. We also calculate the rates of change of the BH binary orbital elements due to those stellar ejections. One of our new findings is that the ejection rate depends (although mildly) on the rotation of the stellar nucleus (its total angular momentum). We also compare the ejection velocity distribution with that produced by the Hills mechanism (stellar binary disruption) and find that the latter produces faster stars on average. Also, the IMBH mechanism produces an ejection velocity distribution which is flattened towards the BH binary plane while the Hills mechanism produces a spherically symmetric one. The results of this paper will allow us in the future to model the ejection of stars by an evolving BH binary and compare both models with textit{Gaia} observations, for a wide variety of environments (galactic nuclei, globular clusters, the Large Magellanic Clouds, etc.).
We report ALMA observations of CO(3-2) emission in the Seyfert2/starburst galaxy NGC1808, at a spatial resolution of 4pc. Our aim is to investigate the morphology and dynamics of the gas inside the central 0.5kpc, and to probe nuclear feeding and fee dback phenomena. We discovered a nuclear spiral of radius 1=45pc and inside it a decoupled circumnuclear disk, or molecular torus of radius 0.13=6pc. The HCN(4-3) and HCO$rm^+$(4-3) and CS(7-6) dense gas line tracers were simultaneously mapped and detected in the nuclear spiral and present the same misalignment in the molecular torus. At the nucleus the HCN/HCO$^+$ and HCN/CS ratios indicate the presence of an AGN. The molecular gas shows regular rotation, within a radius of 400pc, except for the misaligned disk inside the nuclear spiral arms. The computations of the torques exerted on the gas by the barred stellar potential reveal that the gas within a radius of 50pc is feeding the nucleus, on a time-scale of $sim$60Myr. Some non-circular motions are observed towards the center, corresponding to the nuclear spiral arms. We cannot rule out that small extra kinematic perturbations could be interpreted as a weak outflow due to the AGN feedback. The molecular outflow detected at $geqslant$250pc in the NE direction is likely due to supernovae feedback and it is connected to the kpc scale superwind.
60 - M. Colpi , M. Dotti 2009
Binary black holes occupy a special place in our quest for understanding the evolution of galaxies along cosmic history. If massive black holes grow at the center of (pre-)galactic structures that experience a sequence of merger episodes, then dual b lack holes form as inescapable outcome of galaxy assembly. But, if the black holes reach coalescence, then they become the loudest sources of gravitational waves ever in the universe. Nature seems to provide a pathway for the formation of these exotic binaries, and a number of key questions need to be addressed: How do massive black holes pair in a merger? Depending on the properties of the underlying galaxies, do black holes always form a close Keplerian binary? If a binary forms, does hardening proceed down to the domain controlled by gravitational wave back reaction? What is the role played by gas and/or stars in braking the black holes, and on which timescale does coalescence occur? Can the black holes accrete on flight and shine during their pathway to coalescence? N-Body/hydrodynamical codes have proven to be vital tools for studying their evolution, and progress in this field is expected to grow rapidly in the effort to describe, in full realism, the physics of stars and gas around the black holes, starting from the cosmological large scale of a merger. If detected in the new window provided by the upcoming gravitational wave experiments, binary black holes will provide a deep view into the process of hierarchical clustering which is at the heart of the current paradigm of galaxy formation. They will also be exquisite probes for testing General Relativity, as the theory of gravity. The waveforms emitted during the inspiral, coalescence and ring-down phase carry in their shape the sign of a dynamically evolving space-time and the proof of the existence of an horizon.
We explore the hardening of a massive black hole binary embedded in a circum-binary gas disc when the binary and the gas are coplanar and the gas is counter-rotating. The secondary black hole, revolving in the direction opposite to the gas, experienc es a drag from gas-dynamical friction and from direct accretion of part of it. Using two-dimensional (2D) hydrodynamical grid simulations we investigate the effect of changing the accretion prescriptions on the dynamics of the secondary black hole which in turn affect the binary hardening and eccentricity evolution. We find that realistic accretion prescriptions lead to results that differ from those inferred assuming accretion of all the gas within the Roche Lobe of the secondary black hole. Different accretion prescriptions result in different discs surface densities which alter the black holes dynamics back. Full 3D SPH realizations of a number of representative cases, run over a shorter interval of time, validate the general trends observed in the less computationally demanding 2D simulations. Initially circular black hole binaries increase only slightly their eccentricity which then oscillates around small values (<0.1) while they harden. By contrast, initially eccentric binaries become more and more eccentric. A semi-analytical model describing the black holes dynamics under accretion only explores the late evolution stages of the binary in an otherwise unperturbed retrograde disc to illustrate how eccentricity evolves with time in relation to the shape of the underlying surface density distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا