ﻻ يوجد ملخص باللغة العربية
We propose a new scenario for the evolution of a binary of primordial black holes (PBHs). We consider a dynamical friction by ambient dark matter, scattering of dark matter particles with a highly eccentric orbit besides the standard two-body relaxation process to refill the loss cone, and interaction between the binary and a circumbinary disk, assuming that PBHs do not constitute the bulk of dark matter. Binary PBHs lose the energy and angular momentum by these processes, which could be sufficiently efficient for a typical configuration. Such a binary coalesces due to the gravitational wave emission in a time scale much shorter than the age of the universe. We estimate the density parameter of the resultant gravitational wave background. Astrophysical implication concerning the formation of intermediate-mass to supermassive black holes is also discussed.
We update the constraints on the fraction of the Universe that may have gone into primordial black holes (PBHs) over the mass range $10^{-5}text{--}10^{50}$ g. Those smaller than $sim 10^{15}$ g would have evaporated by now due to Hawking radiation,
We modify the procedure to estimate PBH abundance proposed in arXiv:1805.03946 so that it can be applied to a broad power spectrum such as the scale-invariant flat power spectrum. In the new procedure, we focus on peaks of the Laplacian of the curvat
Evidences for the primordial black holes (PBH) presence in the early Universe renew permanently. New limits on their mass spectrum challenge existing models of PBH formation. One of the known model is based on the closed walls collapse after the infl
We calculate the exact formation probability of primordial black holes generated during the collapse at horizon re-entry of large fluctuations produced during inflation, such as those ascribed to a period of ultra-slow-roll. We show that it interpola
Primordial black holes might comprise a significant fraction of the dark matter in the Universe and be responsible for the gravitational wave signals from black hole mergers observed by the LIGO/Virgo collaboration. The spatial clustering of primordi