ترغب بنشر مسار تعليمي؟ اضغط هنا

Beta decay of deformed r-process nuclei near A = 80 and A= 160, including odd-A and odd-odd nuclei, with the Skyrme finite-amplitude method

70   0   0.0 ( 0 )
 نشر من قبل Jonathan Engel
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

After identifying the nuclei in the regions near A =80 and A = 160 for which beta-decay rates have the greatest effect on weak and main r-process abundance patterns, we apply the finite-amplitude method (FAM) with Skyrme energy-density functionals (EDFs) to calculate beta-decay half-lives of those nuclei in the quasiparticle random-phase approximation (QRPA). We use the equal filling approximation to extend our implementation of the charge-changing FAM, which incorporates pairing correlations and allows axially symmetric deformation, to odd-A and odd-odd nuclei. Within this framework we find differences of up to a factor of seven between our calculated beta-decay half-lives and those of previous efforts. Repeated calculations with nuclei near A = 160 and multiple EDFs show a spread of two to four in beta-decay half-lives, with differences in calculated Q values playing an important role. We investigate the implications of these results for r-process simulations.

قيم البحث

اقرأ أيضاً

92 - E. M. Ney , J. Engel , N. Schunck 2020
We use the finite amplitude method (FAM), an efficient implementation of the quasiparticle random phase approximation, to compute beta-decay rates with Skyrme energy-density functionals for 3983 nuclei, essentially all the medium-mass and heavy isoto pes on the neutron rich side of stability. We employ an extension of the FAM that treats odd-mass and odd-odd nuclear ground states in the equal filling approximation. Our rates are in reasonable agreement both with experimental data where available and with rates from other global calculations.
To study the exotic odd nuclear systems, the self-consistent continuum Skyrme-Hartree-Fock-Bogoliubov theory formulated with Greens function technique is extended to include blocking effects with the equal filling approximation. Detailed formula are presented.To perform the integrals of the Greens function properly, the contour paths $C_{rm b}^{-}$ and $C_{rm b}^{+}$ introduced for the blocking effects should include the blocked quasi-particle state but can not intrude into the continuum area. By comparing with the box-discretized calculations, the great advantages of the Greens function method in describing the extended density distributions, resonant states, and the couplings with the continuum in exotic nuclei are shown. Finally, taking the neutron-rich odd nucleus $^{159}$Sn as an example, the halo structure is investigated by blocking the quasi-particle state $1p_{1/2}$. It is found that it is mainly the weakly bound states near the Fermi surface that contribute a lot for the extended density distributions at large coordinate space.
75 - B. Bally , B. Avez , M. Bender 2011
In these proceedings, we report first results for particle-number and angular-momentum projection of self-consistently blocked triaxial one-quasiparticle HFB states for the description of odd-A nuclei in the context of regularized multi-reference ene rgy density functionals, using the entire model space of occupied single-particle states. The SIII parameterization of the Skyrme energy functional and a volume-type pairing interaction are used.
A systematic study of the doublet bands observed in odd-odd mass $sim$ 100 is performed using the microscopic triaxial projected shell model approach. This mass region has depicted some novel features which are not observed in other mass regions, for instance, it has been observed that two chiral bands cross diabatically in $^{106}$Ag. It is demonstrated that this unique feature is due to crossing of the two 2-quasiparticle configurations having different intrinsic structures. Further, we provide a complete set of transition probabilities for all the six-isotopes studied in this work and it is shown that the predicted transitions are in good agreement with the available experimental data.
We develop an effective field theory (EFT) for deformed odd-mass nuclei. These are described as an axially symmetric core to which a nucleon is coupled. In the coordinate system fixed to the core the nucleon is subject to an axially symmetric potenti al. Power counting is based on the separation of scales between low-lying rotations and higher-lying states of the core. In leading order, core and nucleon are coupled by universal derivative terms. These comprise a covariant derivative and gauge potentials which account for Coriolis forces and relate to Berry-phase phenomena. At leading order, the EFT combines the particle-rotor and Nilsson models. We work out the EFT up to next-to-leading order and illustrate the results in $^{239}$Pu and $^{187}$Os. At leading order, odd-mass nuclei with rotational band heads that are close in energy and differ by one unit of angular momentum are triaxially deformed. For band heads that are well separated in energy, triaxiality becomes a subleading effect. The EFT developed in this paper presents a model-independent approach to the particle-rotor system that is capable of systematic improvement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا