ﻻ يوجد ملخص باللغة العربية
To study the exotic odd nuclear systems, the self-consistent continuum Skyrme-Hartree-Fock-Bogoliubov theory formulated with Greens function technique is extended to include blocking effects with the equal filling approximation. Detailed formula are presented.To perform the integrals of the Greens function properly, the contour paths $C_{rm b}^{-}$ and $C_{rm b}^{+}$ introduced for the blocking effects should include the blocked quasi-particle state but can not intrude into the continuum area. By comparing with the box-discretized calculations, the great advantages of the Greens function method in describing the extended density distributions, resonant states, and the couplings with the continuum in exotic nuclei are shown. Finally, taking the neutron-rich odd nucleus $^{159}$Sn as an example, the halo structure is investigated by blocking the quasi-particle state $1p_{1/2}$. It is found that it is mainly the weakly bound states near the Fermi surface that contribute a lot for the extended density distributions at large coordinate space.
Background: The Density-constraint Time-dependent Hartree-Fock method is currently the tool of choice to predict fusion cross-sections. However, it does not include pairing correlations, which have been found recently to play an important role. Purpo
We solve the Hartree-Fock-Bogoliubov (HFB) equations for a spherical mean field and a pairing potential with the inverse Hamiltonian method, which we have developed for the solution of the Dirac equation. This method is based on the variational princ
Weakly-bound deformed nuclei have been studied by the Skyrme Hartree-Fock-Bogoliubov (HFB) approach in large coordinate-space boxes. In particular, the box-size dependence of the HFB calculations of weakly-bound deformed nuclei are investigated, incl
In order to study structure of proto-neutron stars and those in subsequent cooling stages, it is of great interest to calculate inhomogeneous hot and cold nuclear matter in a variety of phases. The finite-temperature Hartree-Fock-Bogoliubov (FT-HFB)
The coordinate space formulation of the Hartree-Fock-Bogoliubov (HFB) method enables self-consistent treatment of mean-field and pairing in weakly bound systems whose properties are affected by the particle continuum space. Of particular interest are