ﻻ يوجد ملخص باللغة العربية
We develop an effective field theory (EFT) for deformed odd-mass nuclei. These are described as an axially symmetric core to which a nucleon is coupled. In the coordinate system fixed to the core the nucleon is subject to an axially symmetric potential. Power counting is based on the separation of scales between low-lying rotations and higher-lying states of the core. In leading order, core and nucleon are coupled by universal derivative terms. These comprise a covariant derivative and gauge potentials which account for Coriolis forces and relate to Berry-phase phenomena. At leading order, the EFT combines the particle-rotor and Nilsson models. We work out the EFT up to next-to-leading order and illustrate the results in $^{239}$Pu and $^{187}$Os. At leading order, odd-mass nuclei with rotational band heads that are close in energy and differ by one unit of angular momentum are triaxially deformed. For band heads that are well separated in energy, triaxiality becomes a subleading effect. The EFT developed in this paper presents a model-independent approach to the particle-rotor system that is capable of systematic improvement.
The effective field theory for collective rotations of triaxially deformed nuclei is generalized to odd-mass nuclei by including the angular momentum of the valence nucleon as an additional degree of freedom. The Hamiltonian is constructed up to next
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections ar
Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu-Goldstone modes using symmetry arguments only. We extend that
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to
We compute the medium-mass nuclei $^{16}$O and $^{40}$Ca using pionless effective field theory (EFT) at next-to-leading order (NLO). The low-energy coefficients of the EFT Hamiltonian are adjusted to experimantal data for nuclei with mass numbers $A=