ﻻ يوجد ملخص باللغة العربية
Long coherence times are key to the performance of quantum bits (qubits). Here, we experimentally and theoretically show that the Hahn-echo coherence time (T2) of electron spins associated with divacancy defects in 4H-SiC reaches 1.3 ms, one of the longest T2 times of an electron spin in a naturally isotopic crystal. Using a first-principles microscopic quantum-bath model, we find that two factors determine the unusually robust coherence. First, in the presence of moderate magnetic fields (300 G and above), the 29Si and 13C paramagnetic nuclear spin baths are decoupled. In addition, because SiC is a binary crystal, homo-nuclear spin pairs are both diluted and forbidden from forming strongly coupled, nearest-neighbor spin pairs. Longer neighbor distances result in fewer nuclear spin flip-flops, a less fluctuating intra-crystalline magnetic environment, and thus a longer T2 time. Our results point to polyatomic crystals as promising hosts for coherent qubits in the solid state.
In this paper, we study the electron spin decoherence of single defects in silicon carbide (SiC) nuclear spin bath. We find that, although the natural abundance of $^{29}rm{Si}$ ($p_{rm{Si}}=4.7%$) is about 4 times larger than that of $^{13}{rm C}$ (
The elimination of defects from SiC has facilitated its move to the forefront of the optoelectronics and power-electronics industries. Nonetheless, because the electronic states of SiC defects can have sharp optical and spin transitions, they are inc
Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond, or individual phosphorous dopants in silicon have shown spectacular progress but either miss established nanotechnology or an efficient sp
Great efforts have been made to the investigation of defects in silicon carbide for their attractive optical and spin properties. However, most of the researches are implemented at low and room temperature. Little is known about the spin coherent pro
Spin defects in silicon carbide (SiC) have attracted increasing interests due to their excellent optical and spin properties, which are useful in quantum information processing. In this work, we systematically investigate the temperature dependence o