ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent control of defect spins in silicon carbide above 550 K

73   0   0.0 ( 0 )
 نشر من قبل Feifei Yan Doctor
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Great efforts have been made to the investigation of defects in silicon carbide for their attractive optical and spin properties. However, most of the researches are implemented at low and room temperature. Little is known about the spin coherent property at high temperature. Here, we experimentally demonstrate coherent control of divacancy defect spins in silicon carbide above 550 K. The spin properties of defects ranging from room temperature to 600 K are investigated, in which the zero-field-splitting is found to have a polynomial temperature dependence and the spin coherence time decreases as the temperature increases. Moreover, as an example of application, we demonstrate a thermal sensing using the Ramsey method at about 450 K. Our experimental results would be useful for the investigation of high temperature properties of defect spins and silicon carbide-based broad-temperature range quantum sensing.

قيم البحث

اقرأ أيضاً

Recently, vacancy-related spin defects in silicon carbide (SiC) have been demonstrated to be potentially suitable for versatile quantum interface building and scalable quantum network construction. Significant efforts have been undertaken to identify spin systems in SiC and to extend their quantum capabilities using large-scale growth and advanced nanofabrication methods. Here we demonstrated a type of spin defect in the 4H polytype of SiC generated via hydrogen ion implantation with high-temperature post-annealing, which is different from any known defects. These spin defects can be optically addressed and coherently controlled even at room temperature, and their fluorescence spectrum and optically detected magnetic resonance spectra are different from those of any previously discovered defects. Moreover, the generation of these defects can be well controlled by optimizing the annealing temperature after implantation. These defects demonstrate high thermal stability with coherently controlled electron spins, facilitating their application in quantum sensing and masers under harsh conditions.
Solid-state color centers with manipulatable spin qubits and telecom-ranged fluorescence are ideal platforms for quantum communications and distributed quantum computations. In this work, we coherently control the nitrogen-vacancy (NV) center spins i n silicon carbide at room temperature, in which telecom-wavelength emission is detected. We increase the NV concentration six-fold through optimization of implantation conditions. Hence, coherent control of NV center spins is achieved at room temperature and the coherence time T2 can be reached to around 17.1 {mu}s. Furthermore, investigation of fluorescence properties of single NV centers shows that they are room temperature photostable single photon sources at telecom range. Taking advantages of technologically mature materials, the experiment demonstrates that the NV centers in silicon carbide are promising platforms for large-scale integrated quantum photonics and long-distance quantum networks.
Spins in solids are cornerstone elements of quantum spintronics. Leading contenders such as defects in diamond, or individual phosphorous dopants in silicon have shown spectacular progress but either miss established nanotechnology or an efficient sp in-photon interface. Silicon carbide (SiC) combines the strength of both systems: It has a large bandgap with deep defects and benefits from mature fabrication techniques. Here we report the characterization of photoluminescence and optical spin polarization from single silicon vacancies in SiC, and demonstrate that single spins can be addressed at room temperature. We show coherent control of a single defect spin and find long spin coherence time under ambient conditions. Our study provides evidence that SiC is a promising system for atomic-scale spintronics and quantum technology.
Defect spins in silicon carbide have become promising platforms with respect to quantum information processing and quantum sensing. Indeed, the optically detected magnetic resonance (ODMR) of defect spins is the cornerstone of the applications. In th is work, we systematically investigate the contrast and linewidth of laser-and microwave power-dependent ODMR with respect to ensemble-divacancy spins in silicon carbide at room temperature. The results suggest that magnetic field sensing sensitivity can be improved by a factor of 10 for the optimized laser and microwave power range. The experiment will be useful for the applications of silicon carbide defects in quantum information processing and ODMR-dependent quantum sensing.
Divacancy defects in silicon carbide have long-lived electronic spin states and sharp optical transitions, with properties that are similar to the nitrogen-vacancy defect in diamond. We report experiments on 4H-SiC that investigate all-optical addres sing of spin states with the zero-phonon-line transitions. Our magneto-spectroscopy results identify the spin $S=1$ structure of the ground and excited state, and a role for decay via intersystem crossing. We use these results for demonstrating coherent population trapping of spin states with divacancy ensembles that have particular orientations in the SiC crystal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا