ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetries of quantum space-time in 3 dimensions

112   0   0.0 ( 0 )
 نشر من قبل Giacomo Rosati
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By applying loop quantum gravity techniques to 3D gravity with a positive cosmological constant $Lambda$, we show how the local gauge symmetry of the theory, encoded in the constraint algebra, acquires the quantum group structure of $so_q(4)$, with $ q = exp{(ihbar sqrt{Lambda}/2kappa)}$. By means of an Inonu-Wigner contraction of the quantum group bi-algebra, keeping $kappa$ finite, we obtain the kappa-Poincare algebra of the flat quantum space-time symmetries.

قيم البحث

اقرأ أيضاً

We consider the scattering of massless particles coupled to an abelian gauge field in 2n-dimensional Minkowski spacetime. Weinbergs soft photon theorem is recast as Ward identities for infinitely many new nontrivial symmetries of the massless QED S-m atrix, with one such identity arising for each propagation direction of the soft photon. These symmetries are identified as large gauge transformations with angle-dependent gauge parameters that are constant along the null generators of null infinity. Almost all of the symmetries are spontaneously broken in the standard vacuum and the soft photons are the corresponding Goldstone bosons. Our result establishes a relationship between soft theorems and asymptotic symmetry groups in any even dimension.
General $mathcal{N}=(1,0)$ supergravity-matter systems in six dimensions may be described using one of the two fully fledged superspace formulations for conformal supergravity: (i) $mathsf{SU}(2)$ superspace; and (ii) conformal superspace. With motiv ation to develop rigid supersymmetric field theories in curved space, this paper is devoted to the study of the geometric symmetries of supergravity backgrounds. In particular, we introduce the notion of a conformal Killing spinor superfield $epsilon^alpha$, which proves to generate extended superconformal transformations. Among its cousins are the conformal Killing vector $xi^a$ and tensor $zeta^{a(n)}$ superfields. The former parametrise conformal isometries of supergravity backgrounds, which in turn yield symmetries of every superconformal field theory. Meanwhile, the conformal Killing tensors of a given background are associated with higher symmetries of the hypermultiplet. By studying the higher symmetries of a non-conformal vector multiplet we introduce the concept of a Killing tensor superfield. We also analyse the problem of computing higher symmetries for the conformal dAlembertian in curved space and demonstrate that, beyond the first-order case, these operators are defined only on conformally flat backgrounds.
Following the recently obtained complete classification of quantum-deformed $mathfrak{o}(4)$, $mathfrak{o}(3,1)$ and $mathfrak{o}(2,2)$ algebras, characterized by classical $r$-matrices, we study their inhomogeneous $D = 3$ quantum IW contractions (i .e. the limit of vanishing cosmological constant), with Euclidean or Lorentzian signature. Subsequently, we compare our results with the complete list of $D = 3$ inhomogeneous Euclidean and $D = 3$ Poincar{e} quantum deformations obtained by P.~Stachura. It turns out that the IW contractions allow us to recover all Stachura deformations. We further discuss the applicability of our results in the models of 3D quantum gravity in the Chern-Simons formulation (both with and without the cosmological constant), where it is known that the relevant quantum deformations should satisfy the Fock-Rosly conditions. The latter deformations in part of the cases are associated with the Drinfeld double structures, which also have been recently investigated in detail.
BMS symmetry is a symmetry of asymptotically flat spacetimes in the vicinity of the null boundary of spacetime and it is expected to play a fundamental role in physics. It is interesting therefore to investigate the structures and properties of quant um deformations of these symmetries, which are expected to shed some light on symmetries of quantum spacetime. In this paper we discuss the structure of the algebra of extended BMS symmetries in 3 and 4 spacetime dimensions, realizing that these algebras contain an infinite number of distinct Poincare subalgebras, a fact that has previously been noted in the 3-dimensional case only. Then we use these subalgebras to construct an infinite number of different Hopf algebras being quantum deformations of the BMS algebras. We also discuss different types of twist-deformations and the dual Hopf algebras, which could be interpreted as noncommutative, extended quantum spacetimes.
116 - T. Banks 2020
The formalism of Holographic Space-time (HST) is a translation of the principles of Lorentzian geometry into the language of quantum information. Intervals along time-like trajectories, and their associated causal diamonds, completely characterize a Lorentzian geometry. The Bekenstein-Hawking-Gibbons-t Hooft-Jacobson-Fischler-Susskind-Bousso Covariant Entropy Principle, equates the logarithm of the dimension of the Hilbert space associated with a diamond to one quarter of the area of the diamonds holographic screen, measured in Planck units. The most convincing argument for this principle is Jacobsons derivation of Einsteins equations as the hydrodynamic expression of this entropy law. In that context, the null energy condition (NEC) is seen to be the analog of the local law of entropy increase. The quantum version of Einsteins relativity principle is a set of constraints on the mutual quantum information shared by causal diamonds along different time-like trajectories. The implementation of this constraint for trajectories in relative motion is the greatest unsolved problem in HST. The other key feature of HST is its claim that, for non-negative cosmological constant or causal diamonds much smaller than the asymptotic radius of curvature for negative c.c., the degrees of freedom localized in the bulk of a diamond are constrained states of variables defined on the holographic screen. This principle gives a simple explanation of otherwise puzzling features of BH entropy formulae, and resolves the firewall problem for black holes in Minkowski space. It motivates a covariant version of the CKNcite{ckn} bound on the regime of validity of quantum field theory (QFT) and a detailed picture of the way in which QFT emerges as an approximation to the exact theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا