ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum $D = 3$ Euclidean and Poincar{e} symmetries from contraction limits

242   0   0.0 ( 0 )
 نشر من قبل Tomasz Trze\\'sniewski
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Following the recently obtained complete classification of quantum-deformed $mathfrak{o}(4)$, $mathfrak{o}(3,1)$ and $mathfrak{o}(2,2)$ algebras, characterized by classical $r$-matrices, we study their inhomogeneous $D = 3$ quantum IW contractions (i.e. the limit of vanishing cosmological constant), with Euclidean or Lorentzian signature. Subsequently, we compare our results with the complete list of $D = 3$ inhomogeneous Euclidean and $D = 3$ Poincar{e} quantum deformations obtained by P.~Stachura. It turns out that the IW contractions allow us to recover all Stachura deformations. We further discuss the applicability of our results in the models of 3D quantum gravity in the Chern-Simons formulation (both with and without the cosmological constant), where it is known that the relevant quantum deformations should satisfy the Fock-Rosly conditions. The latter deformations in part of the cases are associated with the Drinfeld double structures, which also have been recently investigated in detail.

قيم البحث

اقرأ أيضاً

By applying loop quantum gravity techniques to 3D gravity with a positive cosmological constant $Lambda$, we show how the local gauge symmetry of the theory, encoded in the constraint algebra, acquires the quantum group structure of $so_q(4)$, with $ q = exp{(ihbar sqrt{Lambda}/2kappa)}$. By means of an Inonu-Wigner contraction of the quantum group bi-algebra, keeping $kappa$ finite, we obtain the kappa-Poincare algebra of the flat quantum space-time symmetries.
BMS symmetry is a symmetry of asymptotically flat spacetimes in the vicinity of the null boundary of spacetime and it is expected to play a fundamental role in physics. It is interesting therefore to investigate the structures and properties of quant um deformations of these symmetries, which are expected to shed some light on symmetries of quantum spacetime. In this paper we discuss the structure of the algebra of extended BMS symmetries in 3 and 4 spacetime dimensions, realizing that these algebras contain an infinite number of distinct Poincare subalgebras, a fact that has previously been noted in the 3-dimensional case only. Then we use these subalgebras to construct an infinite number of different Hopf algebras being quantum deformations of the BMS algebras. We also discuss different types of twist-deformations and the dual Hopf algebras, which could be interpreted as noncommutative, extended quantum spacetimes.
In four spacetime dimensions, all ${cal N} =1$ supergravity-matter systems can be formulated in the so-called $mathsf{U}(1)$ superspace proposed by Howe in 1981. This paper is devoted to the study of those geometric structures which characterise a ba ckground $mathsf{U}(1)$ superspace and are important in the context of supersymmetric field theory in curved space. We introduce (conformal) Killing tensor superfields $ell_{(alpha_1 dots alpha_m) ({dot alpha}_1 dots {dot alpha}_n)}$, with $m$ and $n$ non-negative integers, $m+n>0$, and elaborate on their significance in the following cases: (i) $m=n=1$; (ii) $m-1=n=0$; and (iii) $m=n>1$. The (conformal) Killing vector superfields $ell_{alpha dot alpha}$ generate the (conformal) isometries of curved superspace, which are symmetries of every (conformal) supersymmetric field theory. The (conformal) Killing spinor superfields $ell_{alpha }$ generate extended (conformal) supersymmetry transformations. The (conformal) Killing tensor superfields with $m=n>1$ prove to generate all higher symmetries of the (massless) massive Wess-Zumino operator.
We develop the general theory of Noether symmetries for constrained systems. In our derivation, the Dirac bracket structure with respect to the primary constraints appears naturally and plays an important role in the characterization of the conserved quantities associated to these Noether symmetries. The issue of projectability of these symmetries from tangent space to phase space is fully analyzed, and we give a geometrical interpretation of the projectability conditions in terms of a relation between the Noether conserved quantity in tangent space and the presymplectic form defined on it. We also examine the enlarged formalism that results from taking the Lagrange multipliers as new dynamical variables; we find the equation that characterizes the Noether symmetries in this formalism. The algebra of generators for Noether symmetries is discussed in both the Hamiltonian and Lagrangian formalisms. We find that a frequent source for the appearance of open algebras is the fact that the transformations of momenta in phase space and tangent space only coincide on shell. Our results apply with no distinction to rigid and gauge symmetries; for the latter case we give a general proof of existence of Noether gauge symmetries for theories with first and second class constraints that do not exhibit tertiary constraints in the stabilization algorithm. Among some examples that illustrate our results, we study the Noether gauge symmetries of the Abelian Chern-Simons theory in $2n+1$ dimensions. An interesting feature of this example is that its primary constraints can only be identified after the determination of the secondary constraint. The example is worked out retaining all the original set of variables.
We classify super-symmetric solutions of the minimal $N=2$ gauged Euclidean supergravity in four dimensions. The solutions with anti-self-dual Maxwell field give rise to anti-self-dual Einstein metrics given in terms of solutions to the $SU(infty)$ T oda equation and more general three-dimensional Einstein--Weyl structures. Euclidean Kastor--Traschen metrics are also characterised by the existence of a certain super covariantly constant spinor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا