ﻻ يوجد ملخص باللغة العربية
General $mathcal{N}=(1,0)$ supergravity-matter systems in six dimensions may be described using one of the two fully fledged superspace formulations for conformal supergravity: (i) $mathsf{SU}(2)$ superspace; and (ii) conformal superspace. With motivation to develop rigid supersymmetric field theories in curved space, this paper is devoted to the study of the geometric symmetries of supergravity backgrounds. In particular, we introduce the notion of a conformal Killing spinor superfield $epsilon^alpha$, which proves to generate extended superconformal transformations. Among its cousins are the conformal Killing vector $xi^a$ and tensor $zeta^{a(n)}$ superfields. The former parametrise conformal isometries of supergravity backgrounds, which in turn yield symmetries of every superconformal field theory. Meanwhile, the conformal Killing tensors of a given background are associated with higher symmetries of the hypermultiplet. By studying the higher symmetries of a non-conformal vector multiplet we introduce the concept of a Killing tensor superfield. We also analyse the problem of computing higher symmetries for the conformal dAlembertian in curved space and demonstrate that, beyond the first-order case, these operators are defined only on conformally flat backgrounds.
The supersymmetrization of curvature squared terms is important in the study of the low-energy limit of compactified superstrings where a distinguished role is played by the Gauss-Bonnet combination, which is ghost-free. In this letter, we construct
In four spacetime dimensions, all ${cal N} =1$ supergravity-matter systems can be formulated in the so-called $mathsf{U}(1)$ superspace proposed by Howe in 1981. This paper is devoted to the study of those geometric structures which characterise a ba
We describe the supersymmetric completion of several curvature-squared invariants for ${cal N}=(1,0)$ supergravity in six dimensions. The construction of the invariants is based on a close interplay between superconformal tensor calculus and recently
The ultrashort unitary (4,0) supermultiplet of 6d superconformal algebra OSp(8*|8) reduces to the CPT-self conjugate supermultiplet of 4d superconformal algebra SU(2,2|8) that represents the fields of maximal N=8 supergravity. The graviton in the (4,
We embed general solutions to 4D Einstein-Maxwell theory into $mathcal{N} geq 2$ supergravity and study quadratic fluctuations of the supergravity fields around the background. We compute one-loop quantum corrections for all fields and show that the