ﻻ يوجد ملخص باللغة العربية
BMS symmetry is a symmetry of asymptotically flat spacetimes in the vicinity of the null boundary of spacetime and it is expected to play a fundamental role in physics. It is interesting therefore to investigate the structures and properties of quantum deformations of these symmetries, which are expected to shed some light on symmetries of quantum spacetime. In this paper we discuss the structure of the algebra of extended BMS symmetries in 3 and 4 spacetime dimensions, realizing that these algebras contain an infinite number of distinct Poincare subalgebras, a fact that has previously been noted in the 3-dimensional case only. Then we use these subalgebras to construct an infinite number of different Hopf algebras being quantum deformations of the BMS algebras. We also discuss different types of twist-deformations and the dual Hopf algebras, which could be interpreted as noncommutative, extended quantum spacetimes.
In this paper, we study quantum group deformations of the infinite-dimensional symmetry algebra of asymptotically AdS spacetimes in three dimensions. Building on previous results in the finite-dimensional subalgebras we classify all possible Lie bial
Recently it has been shown that infrared divergences in the conventional S-matrix elements of gauge and gravitational theories arise from a violation of the conservation laws associated with large gauge symmetries. These infrared divergences can be c
We define and study asymptotic Killing and conformal Killing vectors in $d$-dimensional Minkowski, (A)dS, $mathbb{R}times S^{d-1}$ and ${rm AdS}_2times S^{d-2}$. We construct the associated quantum charges for an arbitrary CFT and show they satisfy a
Interacting quantum scalar field theories in $dS_Dtimes M_d$ spacetime can be reduced to Euclidean field theories in $M_d$ space in the vicinity of $I_+$ infinity of $dS_D$ spacetime. Using this non-perturbative mapping, we analyze the critical behav
By applying loop quantum gravity techniques to 3D gravity with a positive cosmological constant $Lambda$, we show how the local gauge symmetry of the theory, encoded in the constraint algebra, acquires the quantum group structure of $so_q(4)$, with $