ﻻ يوجد ملخص باللغة العربية
Experimentally produced graphene sheets exhibit a wide range of mobility values. Both extrinsic charged impurities and intrinsic ripples (corrugations) have been suggested to induce long-range disorder in graphene and could be a candidate for the dominant source of disorder. Here, using large-scale molecular dynamics and quantum transport simulations, we find that the hopping disorder and the gauge and scalar potentials induced by the ripples are short-ranged, in strong contrast with predictions by continuous models, and the transport fingerprints of the ripple disorder are very different from those of charged impurities. We conclude that charged impurities are the dominant source of disorder in most graphene samples, whereas scattering by ripples is mainly relevant in the high carrier density limit of ultraclean graphene samples (with a charged impurity concentration < 10 ppm) at room and higher temperatures.
We experimentally study the effect of different scattering potentials on the flicker noise observed in graphene devices on silica substrates. The noise in nominally identical devices is seen to behave in two distinct ways as a function of carrier con
We calculate the carrier density dependent ground state properties of graphene in the presence of random charged impurities in the substrate taking into account disorder and interaction effects non-perturbatively on an equal footing in a self-consist
We report strong variations in the Raman spectra for different single-layer graphene samples obtained by micromechanical cleavage, which reveals the presence of excess charges, even in the absence of intentional doping. Doping concentrations up to ~1
Using electrical transport experiments and shot noise thermometry, we find strong evidence that supercollision scattering processes by flexural modes are the dominant electron-phonon energy transfer mechanism in high-quality, suspended graphene aroun
Graphene on a dielectric substrate exhibits spatial doping inhomogeneities, forming electron-hole puddles. Understanding and controlling the latter is of crucial importance for unraveling many of graphenes fundamental properties at the Dirac point. H