ترغب بنشر مسار تعليمي؟ اضغط هنا

Ripples and Charge Puddles in Graphene on a Metallic Substrate

83   0   0.0 ( 0 )
 نشر من قبل Clemens Winkelmann
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene on a dielectric substrate exhibits spatial doping inhomogeneities, forming electron-hole puddles. Understanding and controlling the latter is of crucial importance for unraveling many of graphenes fundamental properties at the Dirac point. Here we show the coexistence and correlation of charge puddles and topographic ripples in graphene decoupled from the metallic substrate it was grown on. The analysis of interferences of Dirac fermion-like electrons yields a linear dispersion relation, indicating that graphene on a metal can recover its intrinsic electronic properties.

قيم البحث

اقرأ أيضاً

The charge carrier density in graphene on a dielectric substrate such as SiO$_2$ displays inhomogeneities, the so-called charge puddles. Because of the linear dispersion relation in monolayer graphene, the puddles are predicted to grow near charge ne utrality, a markedly distinct property from conventional two-dimensional electron gases. By performing scanning tunneling microscopy/spectroscopy on a mesoscopic graphene device, we directly observe the puddles growth, both in spatial extent and in amplitude, as the Dirac point is approached. Self-consistent screening theory provides a unified description of both the macroscopic transport properties and the microscopically observed charge disorder.
We investigate the contribution of charge puddles to the non-vanishing conductivity minimum in disordered graphene flakes at the charge neutrality point. For that purpose, we study systems with a geometry that suppresses the transmission due to evane scent modes allowing to single out the effect of charge fluctuations in the transport properties. We use the recursive Greens functions technique to obtain local and total transmissions through systems that mimic vanishing density of states at the charge neutrality point in the presence of a local disordered local potential to model the charge puddles. Our microscopic model includes electron-electron interactions via a spin resolved Hubbard mean field term. We establish the relation between the charge puddle disorder potential and the electronic transmission at the charge neutrality point. We discuss the implications of our findings to high mobility graphene samples deposited on different substrates and provide a qualitative interpretation of recent experimental results.
64 - W. Sheng , M. Sun , A. Zhou 2013
The effects of substrate on electronic and optical properties of triangular and hexagonal graphene nanoflakes with armchair edges are investigated by using a configuration interaction approach beyond double excitation scheme. The quasiparticle correc tion to the energy gap and exciton binding energy are found to be dominated by the long-range Coulomb interactions and exhibit similar dependence on the dielectric constant of the substrate, which leads to a cancellation of their contributions to the optical gap. As a result, the optical gaps are shown to be insensitive to the dielectric environment and unexpectedly close to the single-particle gaps.
It is known that fluctuations in the electrostatic potential allow for metallic conduction (nonzero conductivity in the limit of an infinite system) if the carriers form a single species of massless two-dimensional Dirac fermions. A nonzero uniform m ass $bar{M}$ opens up an excitation gap, localizing all states at the Dirac point of charge neutrality. Here we investigate numerically whether fluctuations $delta M gg bar{M} eq 0$ in the mass can have a similar effect as potential fluctuations, allowing for metallic conduction at the Dirac point. Our negative conclusion confirms earlier expectations, but does not support the recently predicted metallic phase in a random-gap model of graphene.
We model the optical visibility of monolayer and bilayer graphene deposited on a silicon/silicon oxide substrate or thermally annealed on the surface of silicon carbide. We consider reflection and transmission setups, and find that visibility is stro ngest in reflection reaching the optimum conditions when the bare substrate transmits light resonantly. In the optical range of frequencies a bilayer is approximately twice as visible as a monolayer thereby making the two types of graphene distinguishable from each other.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا