ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-phonon coupling in suspended graphene: supercollisions by ripples

221   0   0.0 ( 0 )
 نشر من قبل Pertti Hakonen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using electrical transport experiments and shot noise thermometry, we find strong evidence that supercollision scattering processes by flexural modes are the dominant electron-phonon energy transfer mechanism in high-quality, suspended graphene around room temperature. The power law dependence of the electron-phonon coupling changes from cubic to quintic with temperature. The change of the temperature exponent by two is reflected in the quadratic dependence on chemical potential, which is an inherent feature of two-phonon quantum processes.



قيم البحث

اقرأ أيضاً

Using electrical transport experiments and shot noise thermometry, we investigate electron-phonon heat transfer rate in a suspended bilayer graphene. Contrary to monolayer graphene with heat flow via three-body supercollision scattering, we find that regular electron - optical phonon scattering in bilayer graphene provides the dominant scattering process at electron energies $ gtrsim 0.15$ eV. We determine the strength of these intrinsic heat flow processes of bilayer graphene and find good agreement with theoretical estimates when both zone edge and zone center optical phonons are taken into account.
158 - F. Alzina , H. Tao , J. Moser 2010
We have investigated the effects of ozone treatment on graphene by Raman scattering. Sequential ozone short-exposure cycles resulted in increasing the $p$ doping levels as inferred from the blue shift of the 2$D$ and $G$ peak frequencies, without int roducing significant disorder. The two-phonon 2$D$ and 2$D$ Raman peak intensities show a significant decrease, while, on the contrary, the one-phonon G Raman peak intensity remains constant for the whole exposure process. The former reflects the dynamics of the photoexcited electrons (holes) and, specifically, the increase of the electron-electron scattering rate with doping. From the ratio of 2$D$ to 2$D$ intensities, which remains constant with doping, we could extract the ratio of electron-phonon coupling parameters. This ratio is found independent on the number of layers up to ten layers. Moreover, the rate of decrease of 2$D$ and 2$D$ intensities with doping was found to slowdown inversely proportional to the number of graphene layers, revealing the increase of the electron-electron collision probability.
We report the first temperature dependent phonon transport measurements in suspended Cu-CVD single layer graphene (SLG) from 15K to 380K using microfabricated suspended devices. The thermal conductance per unit cross section $sigma$/A increases with temperature and exhibits a peak near T~280K ($pm$10K) due to the Umklapp process. At low temperatures (T<140K), the temperature dependent thermal conductivity scales as ~T^{1.5}, suggesting that the main contribution to thermal conductance arises from flexural acoustic (ZA) phonons in suspended SLG. The $sigma$/A reaches a high value of 1.7$times10^5 T^{1.5}$ W/m^2K, which is approaching the expected ballistic phonon thermal conductance for two-dimensional graphene sheets. Our results not only clarify the ambiguity in the thermal conductance, but also demonstrate the potential of Cu-CVD graphene for heat related applications.
Recent experiments have shown surprisingly large thermal time constants in suspended graphene ranging from 10 to 100 ns in drums with a diameter ranging from 2 to 7 microns. The large time constants and their scaling with diameter points towards a th ermal resistance at the edge of the drum. However, an explanation of the microscopic origin of this resistance is lacking. Here, we show how phonon scattering at a kink in the graphene, e.g. formed by sidewall adhesion at the edge of the suspended membrane, can cause a large thermal time constant. This kink strongly limits the fraction of flexural phonons that cross the suspended graphene edge, which causes a thermal interface resistance at its boundary. Our model predicts thermal time constants that are of the same order of magnitude as experimental data, and shows a similar dependence on the circumference. Furthermore, the model predicts the relative in-plane and out-of-plane phonon contributions to graphenes thermal expansion force, in agreement with experiments. We thus show, that in contrast to conventional thermal (Kapitza) resistance which occurs between two different materials, in 2D materials another type of thermal interface resistance can be geometrically induced in a single material.
First-principles studies of the electron-phonon coupling in graphene predict a high coupling strength for the $sigma$ band with $lambda$ values of up to 0.9. Near the top of the $sigma$ band, $lambda$ is found to be $approx 0.7$. This value is consis tent with the recently observed kinks in the $sigma$ band dispersion by angle-resolved photoemission. While the photoemission intensity from the $sigma$ band is strongly influenced by matrix elements due to sub-lattice interference, these effects differ significantly for data taken in the first and neighboring Brillouin zones. This can be exploited to disentangle the influence of matrix elements and electron-phonon coupling. A rigorous analysis of the experimentally determined complex self-energy using Kramers-Kronig transformations further supports the assignment of the observed kinks to strong electron-phonon coupling and yields a coupling constant of $0.6(1)$, in excellent agreement with the calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا