ﻻ يوجد ملخص باللغة العربية
Using electrical transport experiments and shot noise thermometry, we find strong evidence that supercollision scattering processes by flexural modes are the dominant electron-phonon energy transfer mechanism in high-quality, suspended graphene around room temperature. The power law dependence of the electron-phonon coupling changes from cubic to quintic with temperature. The change of the temperature exponent by two is reflected in the quadratic dependence on chemical potential, which is an inherent feature of two-phonon quantum processes.
Using electrical transport experiments and shot noise thermometry, we investigate electron-phonon heat transfer rate in a suspended bilayer graphene. Contrary to monolayer graphene with heat flow via three-body supercollision scattering, we find that
We have investigated the effects of ozone treatment on graphene by Raman scattering. Sequential ozone short-exposure cycles resulted in increasing the $p$ doping levels as inferred from the blue shift of the 2$D$ and $G$ peak frequencies, without int
We report the first temperature dependent phonon transport measurements in suspended Cu-CVD single layer graphene (SLG) from 15K to 380K using microfabricated suspended devices. The thermal conductance per unit cross section $sigma$/A increases with
Recent experiments have shown surprisingly large thermal time constants in suspended graphene ranging from 10 to 100 ns in drums with a diameter ranging from 2 to 7 microns. The large time constants and their scaling with diameter points towards a th
First-principles studies of the electron-phonon coupling in graphene predict a high coupling strength for the $sigma$ band with $lambda$ values of up to 0.9. Near the top of the $sigma$ band, $lambda$ is found to be $approx 0.7$. This value is consis