ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of PARIS LaBr$_3$(Ce)-NaI(Tl) phoswich detectors upto $E_gamma$ $sim$ 22 MeV

71   0   0.0 ( 0 )
 نشر من قبل Chandan Ghosh
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to understand the performance of the PARIS (Photon Array for the studies with Radioactive Ion and Stable beams) detector, detailed characterization of two individual phoswich (LaBr$_3$(Ce)-NaI(Tl)) elements has been carried out. The detector response is investigated over a wide range of $E_{gamma}$ = 0.6 to 22.6 MeV using radioactive sources and employing $^{11}B(p,gamma)$ reaction at $E_p$ = 163 keV and $E_p$ = 7.2 MeV. The linearity of energy response of the LaBr$_3$(Ce) detector is tested upto 22.6 MeV using three different voltage dividers. The data acquisition system using CAEN digitizers is set up and optimized to get the best energy and time resolution. The energy resolution of $sim$ 2.1% at $E_gamma$ = 22.6~MeV is measured for the configuration giving best linearity upto high energy. Time resolution of the phoswich detector is measured with a $^{60}$Co source after implementing CFD algorithm for the digitized pulses and is found to be excellent (FWHM $sim$ 315~ps). In order to study the effect of count rate on detectors, the centroid position and width of the $E_{gamma}$ = 835~keV peak were measured upto 220 kHz count rate. The measured efficiency data with radioactive sources are in good agreement with GEANT4 based simulations. The total energy spectrum after the add-back of energy signals in phoswich components is also presented.

قيم البحث

اقرأ أيضاً

239 - Balaram Dey , C Ghosh , S. Pal 2017
We have studied neutron response of PARIS phoswich [LaBr$_3$(Ce)-NaI(Tl)] detector which is being developed for measuring the high energy (E$_{gamma}$ = 5 - 30 MeV) $gamma$ rays emitted from the decay of highly collective states in atomic nuclei. The relative neutron detection efficiency of LaBr$_3$(Ce) and NaI(Tl) crystal of the phoswich detector has been measured using the time-of-flight (TOF) and pulse shape discrimination (PSD) technique in the energy range of E$_n$ = 1 - 9 MeV and compared with the GEANT4 based simulations. It has been found that for E$_n$ $>$ 3 MeV, $sim$ 95 % of neutrons have the primary interaction in the LaBr$_3$(Ce) crystal, indicating that a clear n-$gamma$ separation can be achieved even at $sim$15 cm flight path.
Using a narrow band positron beam, the response of a large high-resolution NaI(Tl) crystal to an incident positron beam was measured. It was found that nuclear interactions cause the appearance of additional peaks in the low energy tail of the deposited energy spectrum.
Tl$_2$LiYCl$_6$:Ce (TLYC) is a new dual-detection elpasolite scintillator that can detect and distinguish between gamma rays and neutrons using pulse-shape discrimination (PSD). It has a higher density and Z-number than the more mature and well-known elpasolite Cs$_2$LiYCl$_6$:Ce (CLYC), causing it to have a significantly better gamma-ray stopping power. These properties make TLYC an attractive alternative to CLYC for resource-constrained applications where size and weight are important, such as space or national security applications. Such applications may be subjected to a wide range of temperatures, and therefore TLYCs performance was characterized for the first time over a temperature range of -20$^{circ}$C to +50$^{circ}$C in 10$^{circ}$C increments. TLYCs thermal response effects on light-output linearity with energy, gamma-ray photopeak energy resolution, detected neutron energy, pulse shapes, and figure of merit is analyzed and reported. The light output of TLYC was found to be linear with energy over the tested temperature range and was observed to decrease with increasing temperature. The decay time of the scintillation light output was observed to decrease with decreasing temperature at short times, leading to a decreasing PSD figure of merit. The gamma-ray photopeak energy resolution was also observed to degrade with decreasing temperature, due to an asymmetric broadening of the photopeak at low temperatures.
96 - Y. Zhu 2019
Scintillating NaI(Tl) crystals are widely used in a large variety of experimental applications. However, for the use as Dark Matter (DM) detectors, such crystals demand a high level of radio-purity, not achievable by means of standard industrial tech niques. One of the main difficulties comes from the presence of potassium that always accompanies sodium in alkali halides. On the other hand, the arguable DM detection by DAMA experiment using NaI(Tl) scintillating crystals requires a reliable verification able to either confirm the existence of DM or rule out the DAMA claim. Ultra-low radioactivity NaI(Tl) crystals, particularly with very low potassium content, are therefore indispensable to overcome the current stalemate in Dark Matter searches. Nonetheless, apart from DAMA-LIBRA experiments, to date, no other experiment has succeeded in building a detector from NaI(Tl) crystals with potassium content of ppb level. This work describes recent results in the preparation of ultra-radio-pure NaI(Tl) crystals using a modified Bridgman method. A double-walled platinum crucible technique has been designed and reliability tests show that 5 ppb of potassium in the NaI(Tl) crystals of 2 and 3 inches in diameter can be achieved starting from NaI powder with potassium content of the order of 10 ppb. The potassium excess is segregated in the tail-side of the as grown ingot where measured potassium concentration is above 20 ppb. The purifying effect of Bridgman growth for larger NaI(Tl) crystals is currently being tested. The work also reports on scintillation parameters of our NaI(Tl) crystals measured in a dedicated setup conceived for naked, hygroscopic crystals. The reproducible and reliable production of ultra-low radioactivity NaI(Tl) crystals reported in this work will hopefully spur the construction of new DM search experiments and, anyway, clarify the controversial DAMA-LIBRA results.
410 - B.J. Park , J.J. Choe , J.S. Choi 2020
The annual modulation signal observed by the DAMA experiment is a long-standing question in the community of dark matter direct detection. This necessitates an independent verification of its existence using the same detection technique. The COSINE-1 00 experiment has been operating with 106~kg of low-background NaI(Tl) detectors providing interesting checks on the DAMA signal. However, due to higher backgrounds in the NaI(Tl) crystals used in COSINE-100 relative to those used for DAMA, it was difficult to reach final conclusions. Since the start of COSINE-100 data taking in 2016, we also have initiated a program to develop ultra-pure NaI(Tl) crystals for COSINE-200, the next phase of the experiment. The program includes efforts of raw powder purification, ultra-pure NaI(Tl) crystal growth, and detector assembly techniques. After extensive research and development of NaI(Tl) crystal growth, we have successfully grown a few small-size (0.61$-$0.78 kg) thallium-doped crystals with high radio-purity. A high light yield has been achieved by improvements of our detector assembly technique. Here we report the ultra-pure NaI(Tl) detector developments at the Institute for Basic Science, Korea. The technique developed here will be applied to the production of NaI(Tl) detectors for the COSINE-200 experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا