ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal Characterization of Tl$_2$LiYCl$_6$:Ce (TLYC)

110   0   0.0 ( 0 )
 نشر من قبل Katherine Mesick
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Tl$_2$LiYCl$_6$:Ce (TLYC) is a new dual-detection elpasolite scintillator that can detect and distinguish between gamma rays and neutrons using pulse-shape discrimination (PSD). It has a higher density and Z-number than the more mature and well-known elpasolite Cs$_2$LiYCl$_6$:Ce (CLYC), causing it to have a significantly better gamma-ray stopping power. These properties make TLYC an attractive alternative to CLYC for resource-constrained applications where size and weight are important, such as space or national security applications. Such applications may be subjected to a wide range of temperatures, and therefore TLYCs performance was characterized for the first time over a temperature range of -20$^{circ}$C to +50$^{circ}$C in 10$^{circ}$C increments. TLYCs thermal response effects on light-output linearity with energy, gamma-ray photopeak energy resolution, detected neutron energy, pulse shapes, and figure of merit is analyzed and reported. The light output of TLYC was found to be linear with energy over the tested temperature range and was observed to decrease with increasing temperature. The decay time of the scintillation light output was observed to decrease with decreasing temperature at short times, leading to a decreasing PSD figure of merit. The gamma-ray photopeak energy resolution was also observed to degrade with decreasing temperature, due to an asymmetric broadening of the photopeak at low temperatures.



قيم البحث

اقرأ أيضاً

70 - C. Ghosh , V. Nanal , R.G. Pillay 2016
In order to understand the performance of the PARIS (Photon Array for the studies with Radioactive Ion and Stable beams) detector, detailed characterization of two individual phoswich (LaBr$_3$(Ce)-NaI(Tl)) elements has been carried out. The detector response is investigated over a wide range of $E_{gamma}$ = 0.6 to 22.6 MeV using radioactive sources and employing $^{11}B(p,gamma)$ reaction at $E_p$ = 163 keV and $E_p$ = 7.2 MeV. The linearity of energy response of the LaBr$_3$(Ce) detector is tested upto 22.6 MeV using three different voltage dividers. The data acquisition system using CAEN digitizers is set up and optimized to get the best energy and time resolution. The energy resolution of $sim$ 2.1% at $E_gamma$ = 22.6~MeV is measured for the configuration giving best linearity upto high energy. Time resolution of the phoswich detector is measured with a $^{60}$Co source after implementing CFD algorithm for the digitized pulses and is found to be excellent (FWHM $sim$ 315~ps). In order to study the effect of count rate on detectors, the centroid position and width of the $E_{gamma}$ = 835~keV peak were measured upto 220 kHz count rate. The measured efficiency data with radioactive sources are in good agreement with GEANT4 based simulations. The total energy spectrum after the add-back of energy signals in phoswich components is also presented.
Neutron beam monitors with high efficiency, low gamma sensitivity, high time and space resolution are required in neutron beam experiments to continuously diagnose the delivered beam. In this work, commercially available neutron beam monitors have be en characterized using the R2D2 beamline at IFE (Norway) and using a Be-based neutron source. For the gamma sensitivity measurements different gamma sources have been used. The evaluation of the monitors includes, the study of their efficiency, attenuation, scattering and sensitivity to gamma. In this work we report the results of this characterization.
104 - A. Giaz , L.Pellegri , S. Riboldi 2013
The properties of large volume cylindrical 3.5 x 8 inches (89 mm x 203 mm) LaBr3:Ce scintillation detectors coupled to the Hamamatsu R10233-100SEL photo-multiplier tube were investigated. These crystals are among the largest ones ever produced and st ill need to be fully characterized to determine how these detectors can be utilized and in which applications. We tested the detectors using monochromatic gamma-ray sources and in-beam reactions producing gamma rays up to 22.6 MeV; we acquired PMT signal pulses and calculated detector energy resolution and response linearity as a function of gamma-ray energy. Two different voltage dividers were coupled to the Hamamatsu R10233-100SEL PMT: the Hamamatsu E1198-26, based on straightforward resistive network design, and the LABRVD, specifically designed for our large volume LaBr3:Ce scintillation detectors, which also includes active semiconductor devices. Because of the extremely high light yield of LaBr3:Ce crystals we observed that, depending on the choice of PMT, voltage divider and applied voltage, some significant deviation from the ideally proportional response of the detector and some pulse shape deformation appear. In addition, crystal non-homogeneities and PMT gain drifts affect the (measured) energy resolution especially in case of high-energy gamma rays. We also measured the time resolution of detectors with different sizes (from 1x1 inches up to 3.5x8 inches), correlating the results with both the intrinsic properties of PMTs and GEANT simulations of the scintillation light collection process. The detector absolute full energy efficiency was measured and simulated up to gamma-rays of 30 MeV
Long-range order in quasi-one-dimensional (q1D) arrays of superconducting nanowires is established via a dimensional crossover from a fluctuating 1D regime to a phase-coherent 3D ground state. If a homogeneous crystalline superconductor exhibits suff iciently high uniaxial anisotropy, a similar 1D$rightarrow$3D crossover has been predicted to occur, provided that single-particle hopping transverse to the 1D axis is absent in the normal state. Here we present magnetic penetration depth and electrical transport data in single crystals of q1D Tl$_2$Mo$_6$Se$_6$, which reveal a 1D$rightarrow$3D superconducting dimensional crossover. Both experimental techniques uncover multiple energy scales within the superconducting transition, which describe a sequence of fluctuating regimes. As the temperature is reduced below $T_{ons}=$~6.7~K, 1D pairing fluctuations are replaced by 1D phase slips below $T_psim$~5.9~K. These give way to 3D phase fluctuations below $T_{ab}=$~4.9~K, prior to dimensional crossover at $T_{x2}sim$~4.4~K. The electrical resistivity below $T_{ab}$ is quantitatively consistent with the establishment of phase coherence through gradual binding of Josephson vortex strings to form 3D loops. An anomalously low superfluid density persist down to $sim$3~K before rising steeply --- in agreement with a theoretical model for crossovers in q1D superconductors, and suggesting that a small population of unbound, weakly-pinned vortices survives below the crossover. The observation of a dimensional crossover within the superconducting state has important consequences for the low-temperature normal state in Tl$_2$Mo$_6$Se$_6$ and similar q1D metals, which may exhibit one-dimensional behavior over far greater temperature ranges than band structure calculations suggest.
We study the mechanism of instability in transition edge sensor (TES) bolometers used for ground based observations of the Cosmic Microwave Background (CMB) at 270GHz. The instability limits the range of useful operating resistances of the TES down t o $approx$ 50% of $R_n$, and due to variations in detector properties and optical loading within a column of multiplexed detectors, limits the effective on sky yield. Using measurements of the electrical impedance of the detectors, we show the instability is due to the increased bolometer leg $G$ for higher-frequency detection inducing decoupling of the palladium-gold heat capacity from the thermistor. We demonstrate experimentally that the limiting thermal resistance is due to the small cross sectional area of the silicon nitride bolometer island, and so is easily fixed by layering palladium-gold over an oxide protected TES. The resulting detectors can be biased down to a resistance $approx$10% of $R_n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا