ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutron response of PARIS phoswich detector

240   0   0.0 ( 0 )
 نشر من قبل Balaram Dey
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied neutron response of PARIS phoswich [LaBr$_3$(Ce)-NaI(Tl)] detector which is being developed for measuring the high energy (E$_{gamma}$ = 5 - 30 MeV) $gamma$ rays emitted from the decay of highly collective states in atomic nuclei. The relative neutron detection efficiency of LaBr$_3$(Ce) and NaI(Tl) crystal of the phoswich detector has been measured using the time-of-flight (TOF) and pulse shape discrimination (PSD) technique in the energy range of E$_n$ = 1 - 9 MeV and compared with the GEANT4 based simulations. It has been found that for E$_n$ $>$ 3 MeV, $sim$ 95 % of neutrons have the primary interaction in the LaBr$_3$(Ce) crystal, indicating that a clear n-$gamma$ separation can be achieved even at $sim$15 cm flight path.

قيم البحث

اقرأ أيضاً

70 - C. Ghosh , V. Nanal , R.G. Pillay 2016
In order to understand the performance of the PARIS (Photon Array for the studies with Radioactive Ion and Stable beams) detector, detailed characterization of two individual phoswich (LaBr$_3$(Ce)-NaI(Tl)) elements has been carried out. The detector response is investigated over a wide range of $E_{gamma}$ = 0.6 to 22.6 MeV using radioactive sources and employing $^{11}B(p,gamma)$ reaction at $E_p$ = 163 keV and $E_p$ = 7.2 MeV. The linearity of energy response of the LaBr$_3$(Ce) detector is tested upto 22.6 MeV using three different voltage dividers. The data acquisition system using CAEN digitizers is set up and optimized to get the best energy and time resolution. The energy resolution of $sim$ 2.1% at $E_gamma$ = 22.6~MeV is measured for the configuration giving best linearity upto high energy. Time resolution of the phoswich detector is measured with a $^{60}$Co source after implementing CFD algorithm for the digitized pulses and is found to be excellent (FWHM $sim$ 315~ps). In order to study the effect of count rate on detectors, the centroid position and width of the $E_{gamma}$ = 835~keV peak were measured upto 220 kHz count rate. The measured efficiency data with radioactive sources are in good agreement with GEANT4 based simulations. The total energy spectrum after the add-back of energy signals in phoswich components is also presented.
The response of a position-sensitive Li-glass scintillator detector being developed for thermal-neutron detection with 6 mm position resolution has been investigated using collimated beams of thermal neutrons. The detector was moved perpendicularly t hrough the neutron beams in 0.5 to 1.0 mm horizontal and vertical steps. Scintillation was detected in an 8 X 8 pixel multi-anode photomultiplier tube on an event-by-event basis. In general, several pixels registered large signals at each neutron-beam location. The number of pixels registering signal above a set threshold was investigated, with the maximization of the single-hit efficiency over the largest possible area of the detector as the primary goal. At a threshold of ~50% of the mean of the full-deposition peak, ~80% of the events were registered in a single pixel, resulting in an effective position resolution of ~5 mm in X and Y. Lower thresholds generally resulted in events demonstrating higher pixel multiplicities, but these events could also be localized with ~5 mm position resolution.
The possibility to use a mini-phoswich detector to identify ions in the region of Z ~ 10 is explored in the framework of the NUMEN project. The NUMEN program, aimed at the investigation of the nuclear matrix elements connected to the neutrinoless dou ble beta decay by means of double charge exchange nuclear reactions, foresees very high fluencies, which prevent the use of standard silicon as stop detectors. The need of reasonable radiation hardness, together with a total energy resolution around 2% and a high granularity, makes scintillators possible candidates. Promising results are obtained using an array of plastic + inorganic phoswich scintillators readout by means of Silicon Photo Multipliers.
The Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) , composed of two small satellites, is a new mission to monitor the Gamma-Ray Bursts (GRBs) coincident with gravitational wave events with a FOV of 100% all-sky. G ECAM detects and localizes 6 keV-5 MeV GRBs via 25 compact and novel Gamma-Ray Detectors (GRDs). Each GRD module is comprised of a LaBr3:Ce scintillator, SiPM array and preamplifier. A large dynamic range is achieved by the high gain and low gain channels of the preamplifier. This article discusses the performance of a GRD prototype which includes a set of radioactive sources in the range of 5.9-1332.5 keV. The energy resolution and energy to ADC channel conversion of the GRD module are also discussed. The typical energy resolution is 5.3% at 662 keV (FWHM) which meets the relevant requirements (< 8% at 662 keV). The energy calibration capability is evaluated by the measured intrinsic activity of LaBr3:Ce and Geant4 simulation results. The test results demonstrate the feasibility of the GECAM GRD design.
The Backward Angle Neutron Detector (BAND) of CLAS12 detects neutrons emitted at backward angles of $155^circ$ to $175^circ$, with momenta between $200$ and $600$ MeV/c. It is positioned 3 meters upstream of the target, consists of $18$ rows and $5$ layers of $7.2$ cm by $7.2$ cm scintillator bars, and read out on both ends by PMTs to measure time and energy deposition in the scintillator layers. Between the target and BAND there is a 2 cm thick lead wall followed by a 2 cm veto layer to suppress gammas and reject charged particles. This paper discusses the component-selection tests and the detector assembly. Timing calibrations (including offsets and time-walk) were performed using a novel pulsed-laser calibration system, resulting in time resolutions better than $250$ ps (150 ps) for energy depositions above 2 MeVee (5 MeVee). Cosmic rays and a variety of radioactive sources were used to calibration the energy response of the detector. Scintillator bar attenuation lengths were measured. The time resolution results in a neutron momentum reconstruction resolution, $delta p/p < 1.5$% for neutron momentum $200le ple 600$ MeV/c. Final performance of the BAND with CLAS12 is shown, including electron-neutral particle timing spectra and a discussion of the off-time neutral contamination as a function of energy deposition threshold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا