ﻻ يوجد ملخص باللغة العربية
We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {alpha} particles from the 241-Am source can be varied by changing the flight path of the {alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGAS detector for {alpha} particles under the present conditions is found to be ~ 97.3 %.
The response of a position-sensitive Li-glass scintillator detector to $alpha$-particles from a collimated $^{241}$Am source scanned across the face of the detector has been measured. Scintillation light was read out by an 8 X 8 pixel multi-anode pho
Micromegas is a type of micro-pattern gaseous detector currently under R&D for applications in rare event search experiments. Here we report the performance of a Micromegas structure constructed with a micromesh thermo-bonded to a readout plane, moti
The latest Micromesh Gas Amplification Structures (Micromegas) are achieving outstanding energy resolution for low energy photons, with values as low as 11% FWHM for the 5.9 keV line of $^{55}$Fe in argon/isobutane mixtures at atmospheric pressure. A
A MICROMEGAS detection amplifier has been incorporated into the design of the TAMU MDM focal plane detector with the purpose of improving the energy resolution and thus, the particle identification. Beam tests showed a factor of 2 improvement over th
We have developed a novel detector, referred to as an $alpha$-ToF detector, for correlated measurements of atomic masses and decay properties of low-yield, short-lived radioactive isotopes using a multi-reflection time-of-flight mass spectrograph. By