ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy resolution of alpha particles in a microbulk Micromegas detector at high pressure Argon and Xenon mixtures

159   0   0.0 ( 0 )
 نشر من قبل Igor G. Irastorza
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The latest Micromesh Gas Amplification Structures (Micromegas) are achieving outstanding energy resolution for low energy photons, with values as low as 11% FWHM for the 5.9 keV line of $^{55}$Fe in argon/isobutane mixtures at atmospheric pressure. At higher energies (MeV scale), these measurements are more complicated due to the difficulty in confining the events in the chamber, although there is no fundamental reason why resolutions of 1% FWHM or below could not be reached. There is much motivation to demonstrate experimentally this fact in Xe mixtures due to the possible application of Micromegas readouts to the Double Beta Decay search of $^{136}$Xe, or in other experiments needing calorimetry and topology in the same detector. In this paper, we report on systematic measurements of energy resolution with state-of-the-art Micromegas using a 5.5 MeV alpha source in high pressure Ar/isobutane mixtures. Values as low as 1.8% FWHM have been obtained, with possible evidence that better resolutions are achievable. Similar measurements in Xe, of which a preliminary result is also shown here, are under progress.



قيم البحث

اقرأ أيضاً

We model the response of a state of the art micro-hole single-stage charge amplication device (`microbulk Micromegas) in a gaseous atmosphere consisting of Xenon/trimethylamine at various concentrations and pressures. The amplifying structure, made w ith photo-lithographic techniques similar to those followed in the fabrication of gas electron multipliers (GEMs), consisted of a 100 um-side equilateral-triangle pattern with 50 um-diameter holes placed at its vertexes. Once the primary electrons are guided into the holes by virtue of an optimized field configuration, avalanches develop along the 50 um-height channels etched out of the original doubly copper-clad polyimide foil. In order to properly account for the strong field gradients at the holes entrance as well as for the fluctuations of the avalanche process (that ultimately determine the achievable energy resolution), we abandoned the hydrodynamic framework, resorting to a purely microscopic description of the electron trajectories as obtained from elementary cross-sections. We show that achieving a satisfactory description needs additional assumptions about atom-molecule (Penning) transfer reactions and charge recombination to be made.
Micromegas is a type of micro-pattern gaseous detector currently under R&D for applications in rare event search experiments. Here we report the performance of a Micromegas structure constructed with a micromesh thermo-bonded to a readout plane, moti vated by its potential application in two-phase xenon detectors for dark matter and neutrinoless double beta decay experiments. The study is carried out in pure xenon at room temperature. Measurements with alpha particles from the Americium-241 source showed that gas gains larger than 200 can be obtained at xenon pressure up to 3 atm. Gamma rays down to 8 keV were observed with such a device.
High-pressure xenon gas is an attractive detection medium for a variety of applications in fundamental and applied physics. In this paper we study the ionization and scintillation detection properties of xenon gas at 10 bar pressure. For this purpose , we use a source of alpha particles in the NEXT-DEMO time projection chamber, the large scale prototype of the NEXT-100 neutrinoless double beta decay experiment, in three different drift electric field configurations. We measure the ionization electron drift velocity and longitudinal diffusion, and compare our results to expectations based on available electron scattering cross sections on pure xenon. In addition, two types of measurements addressing the connection between the ionization and scintillation yields are performed. On the one hand we observe, for the first time in xenon gas, large event-by-event correlated fluctuations between the ionization and scintillation signals, similar to that already observed in liquid xenon. On the other hand, we study the field dependence of the average scintillation and ionization yields. Both types of measurements may shed light on the mechanism of electron-ion recombination in xenon gas for highly-ionizing particles. Finally, by comparing the response of alpha particles and electrons in NEXT-DEMO, we find no evidence for quenching of the primary scintillation light produced by alpha particles in the xenon gas.
90 - T. Zerguerras 2009
Micro-Pattern Gaseous Detectors (MPGDs) such as Micromegas or GEM are used in particle physics experiments for their capabilities in particle tracking at high rates. Their excellent position resolutions are well known but their energy characteristics have been less studied. The energy resolution is mainly affected by the ionisation processes and detector gain fluctuations. This paper presents a method to separetely measure those two contributions to the energy resolution of a Micromegas detector. The method relies on the injection of a controlled number of electrons. The Micromegas has a 1.6-mm drift zone and a 160-$mu$m amplification gap. It is operated in Ne 95%-iC$mathrm{_4}$H$mathrm{_{10}}$ 5% at atmospheric pressure. The electrons are generated by non-linear photoelectric emission issued from the photons of a pulsed 337-nm wavelength laser coupled to a focusing system. The single electron response has been measured at different gains (3.7 10$mathrm{^4}$, 5.0 10$mathrm{^4}$ and 7.0 10$mathrm{^4}$) and is fitted with a good agreement by a Polya distribution. From those fits, a relative gain variance of 0.31$pm$0.02 is deduced. The setup has also been characterised at several voltages by fitting the energy resolution measured as a function of the number of primary electrons, ranging from 5 up to 210. A maximum value of the Fano factor (0.37) has been estimated for a 5.9 keV X-rays interacting in the Ne 95%-iC$mathrm{_4}$H$mathrm{_{10}}$ 5% gas mixture.
138 - F.J. Iguaz 2011
A new Micromegas manufacturing technique, based on kapton etching technology, has been recently developed, improving the uniformity and stability of this kind of readouts. Excellent energy resolutions have been obtained, reaching 11% FWHM for the 5.9 keV photon peak of 55Fe source and 1.8% FWHM for the 5.5 MeV alpha peak of the 241Am source. The new detector has other advantages like its flexible structure, low material and high radio-purity. The two actual approaches of this technique will be described and the features of these readouts in argon-isobutane mixtures will be presented. Moreover, the low material present in the amplification gap makes these detectors approximate the Rose and Korff model for the avalanche amplification, which will be discussed for the same type of mixtures. Finally, we will present several applications of the microbulk technique.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا