ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of Alpha Particles and Low Energy Gamma Rays by Thermo-Bonded Micromegas in Xenon Gas

165   0   0.0 ( 0 )
 نشر من قبل Yuehuan Wei
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Micromegas is a type of micro-pattern gaseous detector currently under R&D for applications in rare event search experiments. Here we report the performance of a Micromegas structure constructed with a micromesh thermo-bonded to a readout plane, motivated by its potential application in two-phase xenon detectors for dark matter and neutrinoless double beta decay experiments. The study is carried out in pure xenon at room temperature. Measurements with alpha particles from the Americium-241 source showed that gas gains larger than 200 can be obtained at xenon pressure up to 3 atm. Gamma rays down to 8 keV were observed with such a device.



قيم البحث

اقرأ أيضاً

The latest Micromesh Gas Amplification Structures (Micromegas) are achieving outstanding energy resolution for low energy photons, with values as low as 11% FWHM for the 5.9 keV line of $^{55}$Fe in argon/isobutane mixtures at atmospheric pressure. A t higher energies (MeV scale), these measurements are more complicated due to the difficulty in confining the events in the chamber, although there is no fundamental reason why resolutions of 1% FWHM or below could not be reached. There is much motivation to demonstrate experimentally this fact in Xe mixtures due to the possible application of Micromegas readouts to the Double Beta Decay search of $^{136}$Xe, or in other experiments needing calorimetry and topology in the same detector. In this paper, we report on systematic measurements of energy resolution with state-of-the-art Micromegas using a 5.5 MeV alpha source in high pressure Ar/isobutane mixtures. Values as low as 1.8% FWHM have been obtained, with possible evidence that better resolutions are achievable. Similar measurements in Xe, of which a preliminary result is also shown here, are under progress.
218 - J. V. Dawson 2005
Scintillation produced in liquid xenon by alpha particles and gamma rays has been studied as a function of applied electric field. For back scattered gamma rays with energy of about 200 keV, the number of scintillation photons was found to decrease b y 64+/-2% with increasing field strength. Consequently, the pulse shape discrimination power between alpha particles and gamma rays is found to reduce with increasing field, but remaining non-zero at higher fields.
The NEXT experiment aims to observe the neutrinoless double beta decay of $^{136}$Xe in a high pressure gas TPC using electroluminescence (EL) to amplify the signal from ionization. Understanding the response of the detector is imperative in achievin g a consistent and well understood energy measurement. The abundance of xenon k-shell x-ray emission during data taking has been identified as a multitool for the characterisation of the fundamental parameters of the gas as well as the equalisation of the response of the detector. The NEXT-DEMO prototype is a ~1.5 kg volume TPC filled with natural xenon. It employs an array of 19 PMTs as an energy plane and of 256 SiPMs as a tracking plane with the TPC light tube and SiPM surfaces being coated with tetraphenyl butadiene (TPB) which acts as a wavelength shifter for the VUV scintillation light produced by xenon. This paper presents the measurement of the properties of the drift of electrons in the TPC, the effects of the EL production region, and the extraction of position dependent correction constants using K$_{alpha}$ X-ray deposits. These constants were used to equalise the response of the detector to deposits left by gammas from $^{22}$Na.
The X-ARAPUCA device is the baseline choice for the photon detection system of the first far detector module of the DUNE experiment. We present the results of the first complete characterization of a small scale X-ARAPUCA prototype, which is a slice of a full DUNE module. Its total detection efficiency in liquid argon was measured with three different ionizing radiations: $alpha$ particles, $gamma$s and muons and resulted to be $sim$3.0%. This value comfortably satisfies the requirements of the first DUNE far detector module (detection efficiency $>$2.0%) and allows to achieve an energy resolution comparable to the one achievable with the Time Projection Chambers for energies below 10 MeV, which is the region relevant for Supernova neutrino detection.
We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {alpha} particles from the 241-Am source can be varied by changing the flight path of the {alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGAS detector for {alpha} particles under the present conditions is found to be ~ 97.3 %.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا