ﻻ يوجد ملخص باللغة العربية
We review a virial-type estimate which bounds the strength of interaction for a gas of $N$ hard spheres (billiard balls) dispersing into Euclidean space $mathbb{R}^d$. This type of estimate has been known for decades in the context of (semi-)dispersing billiards, and is essentially trivial in that context. Our goal, however, is to write virial estimates in a way which may lend insight into the problem of rigorously deriving Boltzmanns equation (cf. Lanfords theorem). Using virial estimates, we provide a short proof of lower bounds (sharp up to powers of logarithms) on the convergence rate of the first marginal in Lanfords theorem. Such lower bounds will often, but not always, follow trivially from energy conservation, the proof we present holds assuming only that the limiting dynamics is regular enough and does not reduce to free transport.
We consider the motion of a finite though large number $N$ of hard spheres in the whole space $mathbb{R}^n$. Particles move freely until they experience elastic collisions. We use our recent theory of Compensated Integrability in order to estimate ho
We consider a gas of $N$ identical hard spheres in the whole space, and we enforce the Boltzmann-Grad scaling. We may suppose that the particles are essentially independent of each other at some initial time; even so, correlations will be created by
We study the virial coefficients B_k of hard spheres in D dimensions by means of Monte-Carlo integration. We find that B_5 is positive in all dimensions but that B_6 is negative for all D >= 6. For 7<=k<=17 we compute sets of Ree-Hoover diagrams and
We discuss old and new results on the mathematical justification of Boltzmanns equation. The classical result along these lines is a theorem which was proven by Lanford in the 1970s. This paper is naturally divided into three parts. I. Classical. W
This paper provides the first rigorous derivation of a binary-ternary Boltzmann equation describing the kinetic properties of a dense hard-spheres gas, where particles undergo either binary or ternary instantaneous interactions, while preserving mome