ﻻ يوجد ملخص باللغة العربية
We study the virial coefficients B_k of hard spheres in D dimensions by means of Monte-Carlo integration. We find that B_5 is positive in all dimensions but that B_6 is negative for all D >= 6. For 7<=k<=17 we compute sets of Ree-Hoover diagrams and find that either for large D or large k the dominant diagrams are loose packed. We use these results to study the radius of convergence and the validity of the many approximations used for the equations of state for hard spheres.
We review a virial-type estimate which bounds the strength of interaction for a gas of $N$ hard spheres (billiard balls) dispersing into Euclidean space $mathbb{R}^d$. This type of estimate has been known for decades in the context of (semi-)dispersi
In this paper, we generally expressed the virial expansion of ideal quantum gases by the heat kernel coefficients for the corresponding Laplace type operator. As examples, we give the virial coefficients for quantum gases in $d$-dimensional confined
vant Hoff equation relates equilibrium constant $K$ of a chemical reaction to temperature $T$. Though the vant Hoff plot ($ln K$ vs $1/T$) is linear, it is nonlinear for certain chemical reactions. In this work we attribute such observations to virial coefficients.
A system of hard spheres exhibits physics that is controlled only by their density. This comes about because the interaction energy is either infinite or zero, so all allowed configurations have exactly the same energy. The low density phase is liqui
We use a two-level simulation method to analyse the critical point associated with demixing of binary hard sphere mixtures. The method exploits an accurate coarse-grained model with two-body and three-body effective interactions. Using this model wit