ﻻ يوجد ملخص باللغة العربية
The rest-frame UV-optical (i.e., NUV-B) color index is sensitive to the low-level recent star formation and dust extinction, but it is insensitive to the metallicity. In this Letter, we have measured the rest-frame NUV-B color gradients in ~1400 large ($rm r_e>0.18^{primeprime}$), nearly face-on (b/a>0.5) main-sequence star-forming galaxies (SFGs) between redshift 0.5 and 1.5 in the CANDELS/GOODS-S and UDS fields. With this sample, we study the origin of UV-optical color gradients in the SFGs at z~1 and discuss their link with the buildup of stellar mass. We find that the more massive, centrally compact, and more dust extinguished SFGs tend to have statistically more negative raw color gradients (redder centers) than the less massive, centrally diffuse, and less dusty SFGs. After correcting for dust reddening based on optical-SED fitting, the color gradients in the low-mass ($M_{ast} <10^{10}M_{odot}$) SFGs generally become quite flat, while most of the high-mass ($M_{ast} > 10^{10.5}M_{odot}$) SFGs still retain shallow negative color gradients. These findings imply that dust reddening is likely the principal cause of negative color gradients in the low-mass SFGs, while both increased central dust reddening and buildup of compact old bulges are likely the origins of negative color gradients in the high-mass SFGs. These findings also imply that at these redshifts the low-mass SFGs buildup their stellar masses in a self-similar way, while the high-mass SFGs grow inside out.
The rest-frame UV-optical (i.e., $NUV-B$) color is sensitive to both low-level recent star formation (specific star formation rate - sSFR) and dust. In this Letter, we extend our previous work on the origins of $NUV-B$ color gradients in star-forming
We have examined in detail the morphologies of seven z~1.5 passively evolving luminous red galaxies using high resolution HST NICMOS and ACS imaging data. Almost all of these galaxies appear to be relaxed systems, with smooth morphologies at both res
We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at $zsim1.5$ in the Subaru Deep Field. These galaxies are selected as [OII]$lambda$3727 emitters at $zapprox$ 1.47 and 1.62 from narrow-band imaging. We
We present an analysis of the gas dynamics of star-forming galaxies at z~1.5 using data from the KMOS Galaxy Evolution Survey (KGES). We quantify the morphology of the galaxies using $HST$ CANDELS imaging parametrically and non-parametrically. We com
We present new gas kinematic observations with the OSIRIS instrument at the GTC for galaxies in the Cl1604 cluster system at z=0.9. These observations together with a collection of other cluster samples at different epochs analyzed by our group are u