ﻻ يوجد ملخص باللغة العربية
We have examined in detail the morphologies of seven z~1.5 passively evolving luminous red galaxies using high resolution HST NICMOS and ACS imaging data. Almost all of these galaxies appear to be relaxed systems, with smooth morphologies at both rest-frame UV and visible wavelengths. Previous results from spectral synthesis modeling favor a single burst of star formation more than 1 Gyr before the observed epoch. The prevalence of old stellar populations, however, does not correlate exclusively with early-type morphologies as it does in the local universe; the light profiles for some of these galaxies appear to be dominated by massive exponential disks. This evidence for massive old disks, along with the apparent uniformity of stellar age across the disk, suggests formation by a mechanism better described as a form of monolithic collapse than as a hierarchical merger. These galaxies could not have undergone a single major merging event since the bulk of their stars were formed, more than 1 Gyr earlier. There is at least one case, however, that appears to be undergoing a dry merger, which may be an example of the process that converts these unusual galaxies into the familiar spheroids that dominate galaxies comprising old stellar populations at the present epoch.
We apply a new approach to quantifying galaxy morphology and identifying galaxy mergers to the rest-frame far-ultraviolet images of 82 z ~ 4 Lyman break galaxies (LBGs) and 55 1.2 < z < 1.8 emission-line galaxies in the GOODS and Ultra Deep Fields. W
Using HST/WFPC2 imaging in F606W (or F450W) and F814W filters, we obtained the color maps in observed frame for 36 distant (0.4<z<1.2) luminous infrared galaxies (LIRGs), with average star formation rates of ~100 M_sun/yr. Stars and compact sources a
The rest-frame UV-optical (i.e., NUV-B) color index is sensitive to the low-level recent star formation and dust extinction, but it is insensitive to the metallicity. In this Letter, we have measured the rest-frame NUV-B color gradients in ~1400 larg
The rest-frame UV-optical (i.e., $NUV-B$) color is sensitive to both low-level recent star formation (specific star formation rate - sSFR) and dust. In this Letter, we extend our previous work on the origins of $NUV-B$ color gradients in star-forming
We measure the evolution of galaxy clustering out to a redshift of z~1.5 using data from two MUSYC fields, the Extended Hubble Deep Field South (EHDF-S) and the Extended Chandra Deep Field South (ECDF-S). We use photometric redshift information to ca