ترغب بنشر مسار تعليمي؟ اضغط هنا

From Peculiar Morphologies to Hubble-type Spirals: The relation between galaxy dynamics and morphology in star-forming galaxies at z~1.5

77   0   0.0 ( 0 )
 نشر من قبل Steven Gillman
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Gillman




اسأل ChatGPT حول البحث

We present an analysis of the gas dynamics of star-forming galaxies at z~1.5 using data from the KMOS Galaxy Evolution Survey (KGES). We quantify the morphology of the galaxies using $HST$ CANDELS imaging parametrically and non-parametrically. We combine the H$alpha$ dynamics from KMOS with the high-resolution imaging to derive the relation between stellar mass (M$_{*}$) and stellar specific angular momentum (j$_{*}$). We show that high-redshift star-forming galaxies at z~1.5 follow a power-law trend in specific stellar angular momentum with stellar mass similar to that of local late-type galaxies of the form j$_*$$propto$M$_*^{0.53 pm 0.10}$. The highest specific angular momentum galaxies are mostly disc-like, although generally, both peculiar morphologies and disc-like systems are found across the sequence of specific angular momentum at a fixed stellar mass. We explore the scatter within the j$_{*}$-M$_{*}$ plane and its correlation with both the integrated dynamical properties of a galaxy (e.g. velocity dispersion, Toomre Q$_{rm g}$, H$alpha$ star formation rate surface density $Sigma_{rm SFR}$) and its parameterised rest-frame UV/optical morphology (e.g. Sersic index, bulge to total ratio, Clumpiness, Asymmetry and Concentration). We establish that the position in the j$_{*}$-M$_{*}$ plane is strongly correlated with the star-formation surface density and the Clumpiness of the stellar light distribution. Galaxies with peculiar rest-frame UV/optical morphologies have comparable specific angular momentum to disc-dominated galaxies of the same stellar mass, but are clumpier and have higher star-formation rate surface densities. We propose that the peculiar morphologies in high--redshift systems are driven by higher star formation rate surface densities and higher gas fractions leading to a more clumpy inter-stellar medium.

قيم البحث

اقرأ أيضاً

124 - J. M. Lotz , P. Madau 2005
We apply a new approach to quantifying galaxy morphology and identifying galaxy mergers to the rest-frame far-ultraviolet images of 82 z ~ 4 Lyman break galaxies (LBGs) and 55 1.2 < z < 1.8 emission-line galaxies in the GOODS and Ultra Deep Fields. W e compare the distributions of the Gini coefficient (G), second-order moment of the brightest 20% of galaxy light (M20), and concentration (C) for high-redshift and low-redshift galaxies with average signal to noise per pixel > 2.5 and Petrosian radii > 0.3 arcsec. Ten of the 82 LBGs have M20 >= -1.1 and possess bright double or multiple nuclei, implying a major-merger fraction of star-forming galaxies ~ 10-25% at M_{FUV} < -20, depending on our incompleteness corrections. Galaxies with bulge-like morphologies (G >= 0.55, M20 < -1.6) make up ~ 30% of the z ~ 4 LBG sample, while the remaining ~ 50% have G and M20 values higher than expected for smooth bulges and disks and may be star-forming disks, minor-mergers or post-mergers. The star-forming z ~ 1.5 galaxy sample has a morphological distribution which is similar to the UDF z ~ 4 LBGs, with an identical fraction of major-merger candidates but fewer spheroids. The observed morphological distributions are roughly consistent with current hierarchical model predictions for the major-merger rates and minor-merger induced starbursts at z ~ 1.5 and ~4. We also examine the rest-frame FUV-NUV and FUV-B colors as a function of morphology and find no strong correlations at either epoch.
The rest-frame UV-optical (i.e., NUV-B) color index is sensitive to the low-level recent star formation and dust extinction, but it is insensitive to the metallicity. In this Letter, we have measured the rest-frame NUV-B color gradients in ~1400 larg e ($rm r_e>0.18^{primeprime}$), nearly face-on (b/a>0.5) main-sequence star-forming galaxies (SFGs) between redshift 0.5 and 1.5 in the CANDELS/GOODS-S and UDS fields. With this sample, we study the origin of UV-optical color gradients in the SFGs at z~1 and discuss their link with the buildup of stellar mass. We find that the more massive, centrally compact, and more dust extinguished SFGs tend to have statistically more negative raw color gradients (redder centers) than the less massive, centrally diffuse, and less dusty SFGs. After correcting for dust reddening based on optical-SED fitting, the color gradients in the low-mass ($M_{ast} <10^{10}M_{odot}$) SFGs generally become quite flat, while most of the high-mass ($M_{ast} > 10^{10.5}M_{odot}$) SFGs still retain shallow negative color gradients. These findings imply that dust reddening is likely the principal cause of negative color gradients in the low-mass SFGs, while both increased central dust reddening and buildup of compact old bulges are likely the origins of negative color gradients in the high-mass SFGs. These findings also imply that at these redshifts the low-mass SFGs buildup their stellar masses in a self-similar way, while the high-mass SFGs grow inside out.
We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at $zsim1.5$ in the Subaru Deep Field. These galaxies are selected as [OII]$lambda$3727 emitters at $zapprox$ 1.47 and 1.62 from narrow-band imaging. We detect H$alpha$ emission line in 115 galaxies, [OIII]$lambda$5007 emission line in 45 galaxies, and H$beta$, [NII]$lambda$6584, and [SII]$lambdalambda$6716,6731 in 13, 16, and 6 galaxies, respectively. Including the [OII] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at $zsim$1.5. We find a tight correlation between H$alpha$ and [OII], which suggests that [OII] can be a good star formation rate (SFR) indicator for galaxies at $zsim1.5$. The line ratios of H$alpha$/[OII] are consistent with those of local galaxies. We also find that [OII] emitters have strong [OIII] emission lines. The [OIII]/[OII] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [OIII]/[OII] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.
We study the origin and cosmic evolution of the mass-metallicity relation (MZR) in star-forming galaxies based on a full, numerical chemical evolution model. The model was designed to match the local MZRs for both gas and stars simultaneously. This i s achieved by invoking a time-dependent metal enrichment process which assumes either a time-dependent metal outflow with larger metal loading factors in galactic winds at early times, or a time-dependent Initial Mass Function (IMF) with steeper slopes at early times. We compare the predictions from this model with data sets covering redshifts 0<z<3.5. The data suggests a two-phase evolution with a transition point around z ~ 1.5. Before that epoch the MZRgas has been evolving parallel with no evolution in the slope. After z ~ 1.5 the MZRgas started flattening until today. We show that the predictions of both the variable metal outflow and the variable IMF model match these observations very well. Our model also reproduces the evolution of the main sequence, hence the correlation between galaxy mass and star formation rate. We also compare the predicted redshift evolution of the MZRstar with data from the literature. As the latter mostly contains data of massive, quenched early-type galaxies, stellar metallicities at high redshifts tend to be higher in the data than predicted by our model. Data of stellar metallicities of lower-mass (< 10^11 solar mass), star-forming galaxies at high redshift is required to test our model.
106 - Q. Ni , W. N. Brandt , G. Yang 2020
Recent studies show that a universal relation between black-hole (BH) growth and stellar mass ($M_bigstar$) or star formation rate (SFR) is an oversimplification of BH-galaxy co-evolution, and that morphological and structural properties of host gala xies must also be considered. Particularly, a possible connection between BH growth and host-galaxy compactness was identified among star-forming (SF) galaxies. Utilizing $approx 6300$ massive galaxies with $I_{rm 814W}~<~24$ at $z$ $<$ 1.2 in the COSMOS field, we perform systematic partial-correlation analyses to investigate how sample-averaged BH accretion rate ($rm overline{BHAR}$) depends on host-galaxy compactness among SF galaxies, when controlling for morphology and $M_bigstar$ (or SFR). The projected central surface-mass density within 1 kpc, $Sigma_{1}$, is utilized to represent host-galaxy compactness in our study. We find that the $rm overline{BHAR}$-$Sigma_{1}$ relation is stronger than either the $rm overline{BHAR}$-$M_bigstar$ or $rm overline{BHAR}$-SFR relation among SF galaxies, and this $rm overline{BHAR}$-$Sigma_{1}$ relation applies to both bulge-dominated galaxies and galaxies that are not dominated by bulges. This $rm overline{BHAR}$-$Sigma_{1}$ relation among SF galaxies suggests a link between BH growth and the central gas density of host galaxies on the kpc scale, which may further imply a common origin of the gas in the vicinity of the BH and in the central $sim$ kpc of the galaxy. This $rm overline{BHAR}$-$Sigma_{1}$ relation can also be interpreted as the relation between BH growth and the central velocity dispersion of host galaxies at a given gas content, indicating the role of the host-galaxy potential well in regulating accretion onto the BH.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا