ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolution of galaxy scaling relations in clusters at 0.5<z<1.5

405   0   0.0 ( 0 )
 نشر من قبل Jose Manuel P\\'erez-Mart\\'inez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new gas kinematic observations with the OSIRIS instrument at the GTC for galaxies in the Cl1604 cluster system at z=0.9. These observations together with a collection of other cluster samples at different epochs analyzed by our group are used to study the evolution of the Tully-Fisher, velocity-size and stellar mass-angular momentum relations in dense environments over cosmic time. We use 2D and 3D spectroscopy to analyze the kinematics of our cluster galaxies and extract their maximum rotation velocities (Vmax). Our methods are consistently applied to all our cluster samples which make them ideal for an evolutionary comparison. Up to redshift one, our cluster samples show evolutionary trends compatible with previous observational results in the field and in accordance with semianalytical models and hydrodynamical simulations concerning the Tully-Fisher and velocity-size relations. However, we find a factor 3 drop in disk sizes and an average B-band luminosity enhancement of 2 mag by z=1.5. We discuss the role that different cluster-specific interactions may play in producing this observational result. In addition, we find that our intermediate-to-high redshift cluster galaxies follow parallel sequences with respect to the local specific angular momentum-stellar mass relation, although displaying lower angular momentum values in comparison with field samples at similar redshifts. This can be understood by the stronger interacting nature of dense environments with respect to the field.



قيم البحث

اقرأ أيضاً

117 - H. D. Mishra , X. Dai 2019
Most galaxies in clusters have supermassive black holes at their center, and a fraction of those supermassive black holes show strong activity. These active galactic nuclei(AGNs) are an important probe of environmental dependence of galaxy evolution, intra-cluster medium, and cluster-scale feedback. We investigated AGN fraction in one of the largest samples of X-ray selected clusters from the ROSAT and their immediate surrounding field regions below z < 0.5. We found lower average AGN fraction in clusters, (2.37+-0.39)% than for the fields (5.12+-0.16)%. The lower AGN fractions in clusters were measured, after dividing the clusters into five redshift intervals between 0.0 and 0.5, in each redshift interval, and we found an increase in the fraction for both cluster and field galaxies with redshift below z < 0.5, which clearly indicates an environment and redshift dependence. We further divided the clusters into low-mass and high-mass objects using a mass cut at log(M500/Msun) = 13.5, finding comparable AGN fractions for both classifications, while a significantly higher AGN fraction in field. We also measured increasing AGN fractions with clustercentric distance for all redshift bins, further confirming the environmental dependence of AGN activities. In addition, we did not find an obvious trend between AGN fraction and SDSS-R absolute magnitudes among different redshift bins. We conclude that the lower AGN fraction in clusters relative to fields indicate that factors, such as inefficient galaxy mergers and ram pressure stripping cause a deficit of cold gas available in high density regions to fuel the central super-massive black hole. Clusters and fields in present universe have lost more gas relative to their high redshift counterparts resulting in a lower AGN fraction observed today.
128 - S. Giodini 2013
Well-calibrated scaling relations between the observable properties and the total masses of clusters of galaxies are important for understanding the physical processes that give rise to these relations. They are also a critical ingredient for studies that aim to constrain cosmological parameters using galaxy clusters. For this reason much effort has been spent during the last decade to better understand and interpret relations of the properties of the intra-cluster medium. Improved X-ray data have expanded the mass range down to galaxy groups, whereas SZ surveys have openened a new observational window on the intracluster medium. In addition,continued progress in the performance of cosmological simulations has allowed a better understanding of the physical processes and selection effects affecting the observed scaling relations. Here we review the recent literature on various scaling relations, focussing on the latest observational measurements and the progress in our understanding of the deviations from self similarity.
Emission line galaxies (ELGs) are used in several ongoing and upcoming surveys (SDSS-IV/eBOSS, DESI) as tracers of the dark matter distribution. Using a new galaxy formation model, we explore the characteristics of [OII] emitters, which dominate opti cal ELG selections at $zsimeq 1$. Model [OII] emitters at $0.5<z<1.5$ are selected to mimic the DEEP2, VVDS, eBOSS and DESI surveys. The luminosity functions of model [OII] emitters are in reasonable agreement with observations. The selected [OII] emitters are hosted by haloes with $M_{rm halo}geq 10^{10.3}h^{-1}{rm M}_{odot}$, with ~90% of them being central star-forming galaxies. The predicted mean halo occupation distributions of [OII] emitters has a shape typical of that inferred for star-forming galaxies, with the contribution from central galaxies, $langle N rangle_{left[OIIright], cen}$, being far from the canonical step function. The $langle N rangle_{left[OIIright], cen}$ can be described as the sum of an asymmetric Gaussian for disks and a step function for spheroids, which plateaus below unity. The model [OII] emitters have a clustering bias close to unity, which is below the expectations for eBOSS and DESI ELGs. At $zsim 1$, a comparison with observed g-band selected galaxy, which are expected to be dominated by [OII] emitters, indicates that our model produces too few [OII] emitters that are satellite galaxies. This suggests the need to revise our modelling of hot gas stripping in satellite galaxies.
Galaxy clusters are excellent probes to study the effect of environment on galaxy formation and evolution. Along with high-quality observational data, accurate cosmological simulations are required to improve our understanding of galaxy evolution in these systems. In this work, we compare state-of-the-art observational data of massive galaxy clusters ($>10^{14} textrm{M}_{odot}$) at different redshifts ($0<z<1.5$) with predictions from the Hydrangea suite of cosmological hydrodynamic simulations of 24 massive galaxy clusters ($>10^{14} textrm{M}_{odot}$ at $z=0$). We compare three fundamental observables of galaxy clusters: the total stellar mass to halo mass ratio, the stellar mass function (SMF), and the radial mass density profile of the cluster galaxies. In the first two of these, the simulations agree well with the observations, albeit with a slightly too high abundance of $M_star lesssim 10^{10} textrm{M}_{odot}$ galaxies at $z gtrsim 1$. The NFW concentrations of cluster galaxies increase with redshift, in contrast to the decreasing dark matter halo concentrations. This previously observed behaviour is therefore due to a qualitatively different assembly of the smooth DM halo compared to the satellite population. Quantitatively, we however find a discrepancy in that the simulations predict higher stellar concentrations than observed at lower redshifts ($z<0.3$), by a factor of $approx$2. This may be due to selection bias in the simulations, or stem from shortcomings in the build-up and stripping of their inner satellite halo.
176 - Maria E. De Rossi 2015
The evolution of the metal content of galaxies and its relations to other global properties [such as total stellar mass (M*), circular velocity, star formation rate (SFR), halo mass, etc.] provides important constraints on models of galaxy formation. Here we examine the evolution of metallicity scaling relations of simulated galaxies in the Galaxies-Intergalactic Medium Interaction Calculation suite of cosmological simulations. We make comparisons to observations of the correlation of gas-phase abundances with M* (the mass-metallicity relation, MZR), as well as with both M* and SFR or gas mass fraction (the so-called 3D fundamental metallicity relations, FMRs). The simulated galaxies follow the observed local MZR and FMRs over an order of magnitude in M*, but overpredict the metallicity of massive galaxies (log M* > 10.5), plausibly due to inefficient feedback in this regime. We discuss the origin of the MZR and FMRs in the context of galactic outflows and gas accretion. We examine the evolution of mass-metallicity relations defined using different elements that probe the three enrichment channels (SNII, SNIa, and AGB stars). Relations based on elements produced mainly by SNII evolve weakly, whereas those based on elements produced preferentially in SNIa/AGB exhibit stronger evolution, due to the longer timescales associated with these channels. Finally, we compare the relations of central and satellite galaxies, finding systematically higher metallicities for satellites, as observed. We show this is due to the removal of the metal poor gas reservoir that normally surrounds galaxies and acts to dilute their gas-phase metallicity (via cooling/accretion onto the disk), but is lost due to ram pressure stripping for satellites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا