ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemistry in Disks X: The Molecular Content of Proto-planetary Disks in Taurus

108   0   0.0 ( 0 )
 نشر من قبل St\\'ephane Guilloteau
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(abridged) We used the IRAM 30-m to perform a sensitive wideband survey of 30 protoplanetary disks in the Taurus Auriga region. We simultaneously observed HCO$^+$(3-2), HCN(3-2), C$_2$H(3-2), CS(5-4), and two transitions of SO. We combine the results with a previous survey which observed $^{13}$CO (2-1), CN(2-1), two o-H$_2$CO lines and one of SO. We use available interferometric data to derive excitation temperatures of CN and C$_2$H in several sources. We determine characteristic sizes of the gas disks and column densities of all molecules using a parametric power-law disk model. Our study is mostly sensitive to molecules at 200-400 au from the stars. We compare the derived column densities to the predictions of an extensive gas-grain chemical disk model, under conditions representative of T Tauri disks. This survey provides 20 new detections of HCO$^+$ in disks, 18 in HCN, 11 in C$_2$H, 8 in CS and 4 in SO. HCO$^+$ is detected in almost all sources, and its J=3-2 line is essentially optically thick, providing good estimates of the disk radii. The other transitions are (at least partially) optically thin. Variations of the column density ratios do not correlate with any specific property of the star or disk. Disks around Herbig Ae stars appear less rich in molecules than those around T Tauri stars, although the sample remains small. SO is only found in the (presumably younger) embedded objects, perhaps reflecting an evolution of the S chemistry due to increasing depletion with time. Overall, the molecular column densities, and in particular the CN/HCN and CN/C$_2$H ratios, are well reproduced by gas-grain chemistry in cold disks. This study provides a census of simple molecules in disks of radii $> 200-300$ au. Extending that to smaller disks, or searching for less abundant or more complex molecules requires a much more sensitive facility, i.e. NOEMA and ALMA.

قيم البحث

اقرأ أيضاً

We study the molecular content and chemistry of a circumstellar disk surrounding the Herbig Ae star AB Aur at (sub-)millimeter wavelengths. Our aim is to reconstruct the chemical history and composition of the AB Aur disk and to compare it with disks around low-mass, cooler T Tauri stars. We observe the AB Aur disk with the IRAM Plateau de Bure Interferometer in the C- and D- configurations in rotational lines of CS, HCN, C2H, CH3OH, HCO+, and CO isotopes. Using an iterative minimization technique, observed columns densities and abundances are derived. These values are further compared with results of an advanced chemical model that is based on a steady-state flared disk structure with a vertical temperature gradient, and gas-grain chemical network with surface reactions. We firmly detect HCO+ in the 1--0 transition, tentatively detect HCN, and do not detect CS, C2H, and CH3OH. The observed HCO+ and 13CO column densities as well as the upper limits to the column densities of HCN, CS, C2H, and CH3OH are in good agreement with modeling results and those from previous studies. The AB Aur disk possesses more CO, but is less abundant in other molecular species compared to the DM Tau disk. This is primarily caused by intense UV irradiation from the central Herbig A0 star, which results in a hotter disk where CO freeze out does not occur and thus surface formation of complex CO-bearing molecules might be inhibited.
Probing the gas and dust in proto-planetary disks is central for understanding the process of planet formation. In disks surrounding solar type protostars, the bulk of the disk mass resides in the outer midplane, which is cold ($leq$20 K), dense ($ge q 10^7$ cm$^{-3}$) and depleted of CO. Observing the disk midplane has proved, therefore, to be a formidable challenge. Ceccarelli et al. (2004) detected H$_2$D$^+$ emission in a proto-planetary disk and claimed that it probes the midplane gas. Indeed, since all heavy-elements bearing molecules condense out onto the grain mantles, the most abundant ions in the disk midplane are predicted to be H$_3^+$ and its isotopomers. In this article, we carry out a theoretical study of the chemical structure of the outer midplane of proto-planetary disks. Using a self-consistent physical model for the flaring disk structure, we compute the abundances of H$_3^+$ and its deuterated forms across the disk midplane. We also provide the average column densities across the disk of H$_3^+$, H$_2$D$^+$, HD$_2^+$ and D$_3^+$, and line intensities of the ground transitions of the ortho and para forms of H$_2$D$^+$ and HD$_2^+$ respectively. We discuss how the results depend on the cosmic ray ionization rate, dust-to-gas ratio and average grain radius, and general stellar/disk parameters. An important factor is the poorly understood freeze-out of N$_2$ molecules onto grains, which we investigate in depth. We finally summarize the diagnostic values of observations of the H$_3^+$ isotopomers.
116 - A. Natta 2006
We review the properties of dust in protoplanetary disks around optically visible pre-main sequence stars obtained with a variety of observational techniques, from measurements of scattered light at visual and infrared wavelengths to mid-infrared spe ctroscopy and millimeter interferometry. A general result is that grains in disks are on average much larger than in the diffuse interstellar medium (ISM). In many disks, there is evidence that a large mass of dust is in grains with millimeter and centimeter sizes, more similar to sand and pebbles than to grains. Smaller grains (with micron-sizes) exist closer to the disk surface, which also contains much smaller particles, e.g., polycyclic aromatic hydrocarbons. There is some evidence of a vertical stratification, with smaller grains closer to the surface. Another difference with ISM is the higher fraction of crystalline relative to amorphous silicates found in disk surfaces. There is a large scatter in dust properties among different sources, but no evidence of correlation with the stellar properties, for samples that include objects from intermediate to solar mass stars and brown dwarfs. There is also no apparent correlation with the age of the central object, over a range roughly between 1 and 10 Myr. This suggests a scenario where significant grain processing may occur very early in the disk evolution, possibly when it is accreting matter from the parental molecular core. Further evolution may occur, but not necessarily rapidly, since we have evidence that large amounts of grains, from micron to centimeter size, can survive for periods as long as 10 Myr.
153 - Richard P. Nelson 2018
The known exoplanet population displays a great diversity of orbital architectures, and explaining the origin of this is a major challenge for planet formation theories. The gravitational interaction between young planets and their protoplanetary dis ks provides one way in which planetary orbits can be shaped during the formation epoch. Disk-planet interactions are strongly influenced by the structure and physical processes that drive the evolution of the protoplanetary disk. In this review we focus on how disk-planet interactions drive the migration of planets when different assumptions are made about the physics of angular momentum transport, and how it drives accretion flows in protoplanetary disk models. In particular, we consider migration in discs where: (i) accretion flows arise because turbulence diffusively transports angular momentum; (ii) laminar accretion flows are confined to thin, ionised layers near disk surfaces and are driven by the launching of magneto-centrifugal winds, with the midplane being completely inert; (iii) laminar accretion flows pervade the full column density of the disc, and are driven by a combination of large scale horizontal and vertical magnetic fields.
The chemical composition of gas and ice in disks around young stars set the bulk composition of planets. In contrast to protoplanetary disks (Class II), young disks that are still embedded in their natal envelope (Class 0 and I) are predicted to be t oo warm for CO to freeze out, as has been confirmed observationally for L1527 IRS. To establish whether young disks are generally warmer than their more evolved counterparts, we observed five young (Class 0/I and Class I) disks in Taurus with the Atacama Large Millimeter/submillimeter Array (ALMA), targeting C$^{17}$O $2-1$, H$_2$CO $3_{1,2}-2_{1,1}$, HDO $3_{1,2}-2_{2,1}$ and CH$_3$OH $5_K-4_K$ transitions at $0.48^{primeprime} times 0.31^{primeprime}$ resolution. The different freeze-out temperatures of these species allow us to derive a global temperature structure. C$^{17}$O and H$_2$CO are detected in all disks, with no signs of CO freeze-out in the inner $sim$100 au, and a CO abundance close to $sim$10$^{-4}$. H$_2$CO emission originates in the surface layers of the two edge-on disks, as witnessed by the especially beautiful V-shaped emission pattern in IRAS~04302+2247. HDO and CH$_3$OH are not detected, with column density upper limits more than 100 times lower than for hot cores. Young disks are thus found to be warmer than more evolved protoplanetary disks around solar analogues, with no CO freeze-out (or only in the outermost part of $gtrsim$100 au disks) or CO processing. However, they are not as warm as hot cores or disks around outbursting sources, and therefore do not have a large gas-phase reservoir of complex molecules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا