ﻻ يوجد ملخص باللغة العربية
The known exoplanet population displays a great diversity of orbital architectures, and explaining the origin of this is a major challenge for planet formation theories. The gravitational interaction between young planets and their protoplanetary disks provides one way in which planetary orbits can be shaped during the formation epoch. Disk-planet interactions are strongly influenced by the structure and physical processes that drive the evolution of the protoplanetary disk. In this review we focus on how disk-planet interactions drive the migration of planets when different assumptions are made about the physics of angular momentum transport, and how it drives accretion flows in protoplanetary disk models. In particular, we consider migration in discs where: (i) accretion flows arise because turbulence diffusively transports angular momentum; (ii) laminar accretion flows are confined to thin, ionised layers near disk surfaces and are driven by the launching of magneto-centrifugal winds, with the midplane being completely inert; (iii) laminar accretion flows pervade the full column density of the disc, and are driven by a combination of large scale horizontal and vertical magnetic fields.
We consider the radial migration of vortices in two-dimensional isothermal gaseous disks. We find that a vortex core, orbiting at the local gas velocity, induces velocity perturbations that propagate away from the vortex as density waves. The resulti
The increasing number of newly detected exoplanets at short orbital periods raises questions about their formation and migration histories. A particular puzzle that requires explanation arises from one of the key results of the Kepler mission, namely
Studies of planet migration derived from disc planet interactions began before the discovery of exoplanets. The potential importance of migration for determining orbital architectures being realised, the field received greater attention soon after th
The detection of a wide range of substructures such as rings, cavities and spirals has become a common outcome of high spatial resolution imaging of protoplanetary disks, both in the near-infrared scattered light and in the thermal millimetre continu
Volatiles are compounds with low sublimation temperatures, and they make up most of the condensible mass in typical planet-forming environments. They consist of relatively small, often hydrogenated, molecules based on the abundant elements carbon, ni