ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust in Proto-Planetary Disks: Properties and Evolution

117   0   0.0 ( 0 )
 نشر من قبل Leonardo Testi
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Natta




اسأل ChatGPT حول البحث

We review the properties of dust in protoplanetary disks around optically visible pre-main sequence stars obtained with a variety of observational techniques, from measurements of scattered light at visual and infrared wavelengths to mid-infrared spectroscopy and millimeter interferometry. A general result is that grains in disks are on average much larger than in the diffuse interstellar medium (ISM). In many disks, there is evidence that a large mass of dust is in grains with millimeter and centimeter sizes, more similar to sand and pebbles than to grains. Smaller grains (with micron-sizes) exist closer to the disk surface, which also contains much smaller particles, e.g., polycyclic aromatic hydrocarbons. There is some evidence of a vertical stratification, with smaller grains closer to the surface. Another difference with ISM is the higher fraction of crystalline relative to amorphous silicates found in disk surfaces. There is a large scatter in dust properties among different sources, but no evidence of correlation with the stellar properties, for samples that include objects from intermediate to solar mass stars and brown dwarfs. There is also no apparent correlation with the age of the central object, over a range roughly between 1 and 10 Myr. This suggests a scenario where significant grain processing may occur very early in the disk evolution, possibly when it is accreting matter from the parental molecular core. Further evolution may occur, but not necessarily rapidly, since we have evidence that large amounts of grains, from micron to centimeter size, can survive for periods as long as 10 Myr.



قيم البحث

اقرأ أيضاً

Probing the gas and dust in proto-planetary disks is central for understanding the process of planet formation. In disks surrounding solar type protostars, the bulk of the disk mass resides in the outer midplane, which is cold ($leq$20 K), dense ($ge q 10^7$ cm$^{-3}$) and depleted of CO. Observing the disk midplane has proved, therefore, to be a formidable challenge. Ceccarelli et al. (2004) detected H$_2$D$^+$ emission in a proto-planetary disk and claimed that it probes the midplane gas. Indeed, since all heavy-elements bearing molecules condense out onto the grain mantles, the most abundant ions in the disk midplane are predicted to be H$_3^+$ and its isotopomers. In this article, we carry out a theoretical study of the chemical structure of the outer midplane of proto-planetary disks. Using a self-consistent physical model for the flaring disk structure, we compute the abundances of H$_3^+$ and its deuterated forms across the disk midplane. We also provide the average column densities across the disk of H$_3^+$, H$_2$D$^+$, HD$_2^+$ and D$_3^+$, and line intensities of the ground transitions of the ortho and para forms of H$_2$D$^+$ and HD$_2^+$ respectively. We discuss how the results depend on the cosmic ray ionization rate, dust-to-gas ratio and average grain radius, and general stellar/disk parameters. An important factor is the poorly understood freeze-out of N$_2$ molecules onto grains, which we investigate in depth. We finally summarize the diagnostic values of observations of the H$_3^+$ isotopomers.
We investigate the circumstellar dust properties of the oxygen-rich bipolar proto-planetary nebula IRAS 18276-1431 by means of two-dimensional radiative transfer simulations of the circumstellar dust shell. The model geometry is assumed to have a tor us and an envelope. The parameters of the dust and the dust shell are constrained by comparing the SED and NIR intensity and polarisation data with the models. The polarisation in the envelope reaches 50 -- 60 % and is nearly constant in the H and K_S bands in the observations. This weak wavelength dependence of the polarisation can be reproduced with a grain size distribution function for the torus: 0.05 micron <= a with n(a)=a^{-(p=5.5)}exp(-a/{a_c=0.3 micron}). The power index p is significantly steeper than that for interstellar dust. Similar results have also been found in some other PPNs and suggest that mechanisms that grind down large particles may also have acted when the dust particles formed. The spectral opacity index beta is found to be 0.6+/-0.5 from the millimeter fluxes. This low value indicates the presence of large dust grains in the torus. We discuss two possible dust models for the torus. One has a size distribution function of 1.0 micron <= a <= a_max=5,000.0 micron with n(a)=a^{-(p=2.5)} and the other is 1.0 micron <= a <= a_max=10,000.0 micron with n(a)=a^{-(p=3.5)}. The former has beta of 0.633, but we are not able to find reasonable geometry parameters to fit the SED in the infrared. The latter has beta of 1.12, but reproduces the SED better over a wide wavelength range. With this dust model, the geometric parameters are estimated as follows: the inner and outer radii are 30 AU and 1000 AU and the torus mass is 3.0 M_sun. Assuming an expansion velocity of 15 kms^{-1}, the torus formation time and mass-loss rate are found to be sim300 yrs and sim10^{-2}M_sun yr^{-1} respectively.
(abridged) We used the IRAM 30-m to perform a sensitive wideband survey of 30 protoplanetary disks in the Taurus Auriga region. We simultaneously observed HCO$^+$(3-2), HCN(3-2), C$_2$H(3-2), CS(5-4), and two transitions of SO. We combine the results with a previous survey which observed $^{13}$CO (2-1), CN(2-1), two o-H$_2$CO lines and one of SO. We use available interferometric data to derive excitation temperatures of CN and C$_2$H in several sources. We determine characteristic sizes of the gas disks and column densities of all molecules using a parametric power-law disk model. Our study is mostly sensitive to molecules at 200-400 au from the stars. We compare the derived column densities to the predictions of an extensive gas-grain chemical disk model, under conditions representative of T Tauri disks. This survey provides 20 new detections of HCO$^+$ in disks, 18 in HCN, 11 in C$_2$H, 8 in CS and 4 in SO. HCO$^+$ is detected in almost all sources, and its J=3-2 line is essentially optically thick, providing good estimates of the disk radii. The other transitions are (at least partially) optically thin. Variations of the column density ratios do not correlate with any specific property of the star or disk. Disks around Herbig Ae stars appear less rich in molecules than those around T Tauri stars, although the sample remains small. SO is only found in the (presumably younger) embedded objects, perhaps reflecting an evolution of the S chemistry due to increasing depletion with time. Overall, the molecular column densities, and in particular the CN/HCN and CN/C$_2$H ratios, are well reproduced by gas-grain chemistry in cold disks. This study provides a census of simple molecules in disks of radii $> 200-300$ au. Extending that to smaller disks, or searching for less abundant or more complex molecules requires a much more sensitive facility, i.e. NOEMA and ALMA.
We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of d isks containing an already formed planet. The resulting dust structures vary strongly with particle size and planetary gaps are much sharper than in the gas phase, making them easier to detect with ALMA than anticipated. We also find that there is a range of masses where a planet can open a gap in the dust layer whereas it doesnt in the gas disk. Our dust distributions are fed to the radiative transfer code MCFOST to compute synthetic images, in order to derive constraints on the settling and growth of dust grains in observed disks.
When imaged at high-resolution, many proto-planetary discs show gaps and rings in their dust sub-mm continuum emission profile. These structures are widely considered to originate from local maxima in the gas pressure profile. The properties of the u nderlying gas structures are however unknown. In this paper we present a method to measure the dust-gas coupling $alpha/St$ and the width of the gas pressure bumps affecting the dust distribution, applying high-precision techniques to extract the gas rotation curve from emission lines data-cubes. As a proof-of-concept, we then apply the method to two discs with prominent sub-structure, HD163296 and AS 209. We find that in all cases the gas structures are larger than in the dust, confirming that the rings are pressure traps. Although the grains are sufficiently decoupled from the gas to be radially concentrated, we find that the degree of coupling of the dust is relatively good ($alpha/St sim 0.1$). We can therefore reject scenarios in which the disc turbulence is very low and the dust has grown significantly. If we further assume that the dust grain sizes are set by turbulent fragmentation, we find high values of the $alpha$ turbulent parameter ($alpha sim 10^{-2}$). Alternatively, solutions with smaller turbulence are still compatible with our analysis if another process is limiting grain growth. For HD163296, recent measurements of the disc mass suggest that this is the case if the grain size is 1mm. Future constraints on the dust spectral indices will help to discriminate between the two alternatives.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا