ترغب بنشر مسار تعليمي؟ اضغط هنا

Lifetime and surface-to-bulk scattering off vacancies of the topological surface state in the three-dimensional strong topological insulators Bi2Te3 and Bi2Se3

429   0   0.0 ( 0 )
 نشر من قبل Phivos Mavropoulos
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the finite lifetimes of the topologically protected electrons in the surface state of Bi2Te3 and Bi2Se3 due to elastic scattering off surface vacancies and as a function of energy. The scattering rates are decomposed into surface-to-surface and surface-to-bulk contributions, giving us new fundamental insights into the scattering properties of the topological surface states (TSS). If the number of possible final bulk states is much larger than the number of final surface states, then the surface-to-bulk contribution is of importance, otherwise the surface-to-surface contribution dominates. Additionally, we find defect resonances that have a significant impact on the scattering properties of the TSS. They can strongly change the lifetime of the surface state to vary between tens of fs to ps at surface defect concentrations of 1 at%.

قيم البحث

اقرأ أيضاً

The archetypical 3D topological insulators Bi2Se3, Bi2Te3 and Sb2Te3 commonly exhibit high bulk conductivities, hindering the characterization of the surface state charge transport. The optimally doped topological insulators Bi2Te2Se and Bi2-xSbxTe2S , however, allow for such characterizations to be made. Here we report the first experimental comparison of the topological surface states and bulk conductances of Bi2Te2Se and Bi1.1Sb0.9Te2S, based on temperature-dependent high-pressure measurements. We find that the surface state conductance at low temperatures remains constant in the face of orders of magnitude increase in the bulk state conductance, revealing in a straightforward way that the topological surface states and bulk states are decoupled at low temperatures, consistent with theoretical models, and confirming topological insulators to be an excellent venue for studying charge transport in 2D Dirac electron systems.
Topological insulators (TIs) are predicted to be composed of an insulating bulk state along with conducting channels on the boundary of the material. In Bi2Se3, however, the Fermi level naturally resides in the conduction band due to intrinsic doping by selenium vacancies, leading to metallic bulk states. In such non-ideal TIs it is not well understood how the surface and bulk states behave under environmental disorder. In this letter, based on transport measurements of Bi2Se3 thin films, we show that the bulk states are sensitive to environmental disorder but the surface states remain robust.
Hydrogen, the smallest and most abundant element in nature, can be efficiently incorporated within a solid and drastically modify its electronic state - it has been known to induce novel magnetoelectric effects in complex perovskites and modulate ins ulator-to-metal transition in a correlated Mott oxide. Here we demonstrate that hydrogenation resolves an outstanding challenge in chalcogenide classes of three-dimensional (3D) topological insulators and magnets - the control of intrinsic bulk conduction that denies access to quantum surface transport. With electrons donated by a reversible binding of H+ ions to Te(Se) chalcogens, carrier densities are easily changed by over 10^20 cm^-3, allowing tuning the Fermi level into the bulk bandgap to enter surface/edge current channels. The hydrogen-tuned topological materials are stable at room temperature and tunable disregarding bulk size, opening a breadth of platforms for harnessing emergent topological states.
We numerically investigate the surface states of a strong topological insulator in the presence of strong electron-electron interactions. We choose a spherical topological insulator geometry to make the surface amenable to a finite size analysis. The single-particle problem maps to that of Landau orbitals on the sphere with a magnetic monopole at the center that has unit strength and opposite sign for electrons with opposite spin. Assuming density-density contact interactions, we find superconducting and anomalous (quantum) Hall phases for attractive and repulsive interactions, respectively, as well as chiral fermion and chiral Majorana fermion boundary modes between different phases. Our setup is preeminently adapted to the search for topologically ordered surface terminations that could be microscopically stabilized by tailored surface interaction profiles.
The unoccupied states in topological insulators Bi_2Se_3, PbSb_2Te_4, and Pb_2Bi_2Te_2S_3 are studied by the density functional theory methods. It is shown that a surface state with linear dispersion emerges in the inverted conduction band energy gap at the center of the surface Brillouin zone on the (0001) surface of these insulators. The alternative expression of Z_2 invariant allowed us to show that a necessary condition for the existence of the second Gamma Dirac cone is the presence of local gaps at the time reversal invariant momentum points of the bulk spectrum and change of parity in one of these points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا