ترغب بنشر مسار تعليمي؟ اضغط هنا

Doping of Bi2Te3 using electron irradiation

152   0   0.0 ( 0 )
 نشر من قبل Carl Willem Rischau
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron irradiation is investigated as a way to dope the topological insulator Bi2Te3. For this, p-type Bi2Te3 single crystals have been irradiated with 2.5 MeV electrons at room temperature and electrical measurements have been performed in-situ as well as ex-situ in magnetic fields up to 14 T. The defects created by irradiation act as electron donors allowing the compensation of the initial hole-type conductivity of the material as well as the conversion of the conductivity from p- to n-type. The changes in carrier concentration are investigated using Hall effect and Shubnikov-de Haas (SdH) oscillations, clearly observable in the p-type samples before irradiation, but also after the irradiation-induced conversion of the conductivity to n-type. The SdH patterns observed for the magnetic field along the trigonal axis can be entirely explained assuming the contribution of only one valence and conduction band, respectively, and Zeeman-splitting of the orbital levels.

قيم البحث

اقرأ أيضاً

The authors report micro-Raman investigation of changes in the single and bilayer graphene crystal lattice induced by the low and medium energy electron-beam irradiation (5 and 20 keV). It was found that the radiation exposures results in appearance of the strong disorder D band around 1345 1/cm indicating damage to the lattice. The D and G peak evolution with the increasing radiation dose follows the amorphization trajectory, which suggests graphenes transformation to the nanocrystalline, and then to amorphous form. The results have important implications for graphene characterization and device fabrication, which rely on the electron microscopy and focused ion beam processing.
Fluorescent nanodiamonds containing negatively-charged nitrogen-vacancy (NV$^-$) centers are promising for a wide range of applications, such as for sensing, as fluorescence biomarkers, or to hyperpolarize nuclear spins. NV$^-$ centers are formed fro m substitutional nitrogen (P1 centers) defects and vacancies in the diamond lattice. Maximizing the concentration of NVs is most beneficial, which justifies the search for methods with a high yield of conversion from P1 to NV$^-$. We report here the characterization of surface cleaned fluorescent micro- and nanodiamonds, obtained by irradiation of commercial diamond powder with high-energy (10 MeV) electrons and simultaneous annealing at 800{deg}C. Using this technique and increasing the irradiation dose, we demonstrate the creation of NV$^-$ with up to 25 % conversion yield. Finally, we monitor the creation of irradiation-induced spin-1 defects in microdiamond particles, which we associate with W16 and W33 centers, and investigate the effects of irradiation dose and particle size on the coherence time of NV$^-$.
59 - L. B. Duffy 2018
Magnetic doping with transition metal ions is the most widely used approach to break timereversal symmetry in a topological insulator, a prerequisite for unlocking the TIs exotic potential. Recently, we reported the doping of Bi2Te3 thin films with r are earth ions, which, owing to their large magnetic moments, promise commensurately large magnetic gap openings in the topological surface states. However, only when doping with Dy has a sizable gap been observed in angle-resolved photoemission spectroscopy, which persists up to room-temperature. Although disorder alone could be ruled out as a cause of the topological phase transition, a fundamental understanding of the magnetic and electronic properties of Dy:Bi2Te3 remained elusive. Here, we present an X-ray magnetic circular dichroism, polarized neutron reflectometry, muon spin rotation, and resonant photoemission study of the microscopic magnetic and electronic properties. We find that the films are not simply paramagnetic but that instead the observed behavior can be well explained by the assumption of slowly fluctuating, inhomogeneous magnetic patches with increasing volume fraction as the temperature decreases. At liquid helium temperatures, a large effective magnetization can be easily introduced by the application of moderate magnetic fields, implying that this material is very suitable for proximity coupling to an underlying ferromagnetic insulator or in a heterostructure with transition metal-doped layers. However, the introduction of some charge carriers by the dopants cannot be excluded at least in these highly doped samples. Nevertheless, we find that the magnetic order is not mediated via the conduction channel in these rare earth doped samples and therefore magnetic order and carrier concentration are expected to be independently controllable. This is not generally the case for transition metal doped topological insulators.
We report results of quantum efficiency (QE) measurements carried out on a 150 nm thick nitrogen-incorporated ultrananocrystalline diamond terminated with hydrogen; abbreviated as (N)UNCD:H. (N)UNCD:H demonstrated a QE of $sim$10$^{-3}$ ($sim$0.1%) a t 254 nm. Moreover, (N)UNCD:H was sensitive in visible light with a QE of $sim$5$times$10$^{-8}$ at 405 nm and $sim$5$times$10$^{-9}$ at 436 nm. After growth and prior to QE measurements, samples were exposed to air for about 2 hours for transfer and loading. Such design takes advantage of a key combination: 1) H-termination inducing negative electron affinity (NEA) on the (N)UNCD and stabilizies its surface against air exposure; and 2) N-incorporation inducing $n$-type conductivity in intrinsically insulating UNCD.
We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi$_2$Te$_3$ following a femtosecond laser excitation. Using time and angle resolved photoelectron spectroscopy, we provide a direct real-time visuali sation of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few ps are necessary for the Dirac cone non-equilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا