ﻻ يوجد ملخص باللغة العربية
We give an overview of the representation theory of restricted rational Cherednik algebras. These are certain finite-dimensional quotients of rational Cherednik algebras at t=0. Their representation theory is connected to the geometry of the Calogero-Moser space, and there is a lot of evidence that they contain certain information about Hecke algebras even though the precise connection is so far unclear. We outline the basic theory along with some open problems and conjectures, and give explicit results in the cyclic and dihedral cases.
We introduce parabolic degenerations of rational Cherednik algebras of complex reflection groups, and use them to give necessary conditions for finite-dimensionality of an irreducible lowest weight module for the rational Cherednik algebra of a compl
Ram and Rammage have introduced an automorphism and Clifford theory on affine Hecke algebras. Here we will extend them to cyclotomic Hecke algebras and rational Cherednik algebras.
We study quantized Coulomb branches of quiver gauge theories of Jordan type. We prove that the quantized Coulomb branch is isomorphic to the spherical graded Cherednik algebra in the unframed case, and is isomorphic to the spherical cyclotomic ration
A double extension ($mathscr{D}$ extension) of a Lie (super)algebra $mathfrak a$ with a non-degenerate invariant symmetric bilinear form $mathscr{B}$, briefly: a NIS-(super)algebra, is an enlargement of $mathfrak a$ by means of a central extension an
We give explicit formulas proving restrictedness of the following Lie (super)algebras: known exceptional simple vectorial Lie (super)algebras in characteristic 3, deformed Lie (super)algebras with indecomposable Cartan matrix, and (under certain cond