ترغب بنشر مسار تعليمي؟ اضغط هنا

Restricted rational Cherednik algebras

83   0   0.0 ( 0 )
 نشر من قبل Ulrich Thiel
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Ulrich Thiel




اسأل ChatGPT حول البحث

We give an overview of the representation theory of restricted rational Cherednik algebras. These are certain finite-dimensional quotients of rational Cherednik algebras at t=0. Their representation theory is connected to the geometry of the Calogero-Moser space, and there is a lot of evidence that they contain certain information about Hecke algebras even though the precise connection is so far unclear. We outline the basic theory along with some open problems and conjectures, and give explicit results in the cyclic and dihedral cases.



قيم البحث

اقرأ أيضاً

We introduce parabolic degenerations of rational Cherednik algebras of complex reflection groups, and use them to give necessary conditions for finite-dimensionality of an irreducible lowest weight module for the rational Cherednik algebra of a compl ex reflection group, and for the existence of a non-zero map between two standard modules. The latter condition reproduces and enhances, in the case of the symmetric group, the combinatorics of cores and dominance order, and in general shows that the c-ordering on category O may be replaced by a much coarser ordering. The former gives a new proof of the classification of finite dimensional irreducible modules for the Cherednik algebra of the symmetric group.
74 - Shoumin Liu 2016
Ram and Rammage have introduced an automorphism and Clifford theory on affine Hecke algebras. Here we will extend them to cyclotomic Hecke algebras and rational Cherednik algebras.
We study quantized Coulomb branches of quiver gauge theories of Jordan type. We prove that the quantized Coulomb branch is isomorphic to the spherical graded Cherednik algebra in the unframed case, and is isomorphic to the spherical cyclotomic ration al Cherednik algebra in the framed case. We also prove that the quantized Coulomb branch is a deformation of a subquotient of the Yangian of the affine $mathfrak{gl}(1)$.
A double extension ($mathscr{D}$ extension) of a Lie (super)algebra $mathfrak a$ with a non-degenerate invariant symmetric bilinear form $mathscr{B}$, briefly: a NIS-(super)algebra, is an enlargement of $mathfrak a$ by means of a central extension an d a derivation; the affine Kac-Moody algebras are the best known examples of double extensions of loops algebras. Let $mathfrak a$ be a restricted Lie (super)algebra with a NIS $mathscr{B}$. Suppose $mathfrak a$ has a restricted derivation $mathscr{D}$ such that $mathscr{B}$ is $mathscr{D}$-invariant. We show that the double extension of $mathfrak a$ constructed by means of $mathscr{B}$ and $mathscr{D}$ is restricted. We show that, the other way round, any restricted NIS-(super)algebra with non-trivial center can be obtained as a $mathscr{D}$-extension of another restricted NIS-(super)algebra subject to an extra condition on the central element. We give new examples of $mathscr{D}$-extensions of restricted Lie (super)algebras, and pre-Lie superalgebras indigenous to characteristic 3.
We give explicit formulas proving restrictedness of the following Lie (super)algebras: known exceptional simple vectorial Lie (super)algebras in characteristic 3, deformed Lie (super)algebras with indecomposable Cartan matrix, and (under certain cond itions) their simple subquotients over an algebraically closed field of characteristic 3, as well as one type of the deformed divergence-free Lie superalgebras with any number of indeterminates in any characteristic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا