ﻻ يوجد ملخص باللغة العربية
We study quantized Coulomb branches of quiver gauge theories of Jordan type. We prove that the quantized Coulomb branch is isomorphic to the spherical graded Cherednik algebra in the unframed case, and is isomorphic to the spherical cyclotomic rational Cherednik algebra in the framed case. We also prove that the quantized Coulomb branch is a deformation of a subquotient of the Yangian of the affine $mathfrak{gl}(1)$.
We give an overview of the representation theory of restricted rational Cherednik algebras. These are certain finite-dimensional quotients of rational Cherednik algebras at t=0. Their representation theory is connected to the geometry of the Calogero
Let $mathscr{A}_q$ be the $K$-theoretic Coulomb branch of a $3d$ $mathcal{N}=4$ quiver gauge theory with quiver $Gamma$, and $mathscr{A}_q subseteq mathscr{A}_q$ be the subalgebra generated by the equivariant $K$-theory of a point together with the d
We introduce parabolic degenerations of rational Cherednik algebras of complex reflection groups, and use them to give necessary conditions for finite-dimensionality of an irreducible lowest weight module for the rational Cherednik algebra of a compl
Ram and Rammage have introduced an automorphism and Clifford theory on affine Hecke algebras. Here we will extend them to cyclotomic Hecke algebras and rational Cherednik algebras.
Three-dimensional Coulomb branches have a prominent role in the study of moduli spaces of supersymmetric gauge theories with $8$ supercharges in $3,4,5$, and $6$ dimensions. Inspired by simply laced $3$d $mathcal{N}=4$ supersymmetric quiver gauge the