Ram and Rammage have introduced an automorphism and Clifford theory on affine Hecke algebras. Here we will extend them to cyclotomic Hecke algebras and rational Cherednik algebras.
We give an overview of the representation theory of restricted rational Cherednik algebras. These are certain finite-dimensional quotients of rational Cherednik algebras at t=0. Their representation theory is connected to the geometry of the Calogero
-Moser space, and there is a lot of evidence that they contain certain information about Hecke algebras even though the precise connection is so far unclear. We outline the basic theory along with some open problems and conjectures, and give explicit results in the cyclic and dihedral cases.
We introduce parabolic degenerations of rational Cherednik algebras of complex reflection groups, and use them to give necessary conditions for finite-dimensionality of an irreducible lowest weight module for the rational Cherednik algebra of a compl
ex reflection group, and for the existence of a non-zero map between two standard modules. The latter condition reproduces and enhances, in the case of the symmetric group, the combinatorics of cores and dominance order, and in general shows that the c-ordering on category O may be replaced by a much coarser ordering. The former gives a new proof of the classification of finite dimensional irreducible modules for the Cherednik algebra of the symmetric group.
We study quantized Coulomb branches of quiver gauge theories of Jordan type. We prove that the quantized Coulomb branch is isomorphic to the spherical graded Cherednik algebra in the unframed case, and is isomorphic to the spherical cyclotomic ration
al Cherednik algebra in the framed case. We also prove that the quantized Coulomb branch is a deformation of a subquotient of the Yangian of the affine $mathfrak{gl}(1)$.
The notion of rational spin double affine Hecke algebras (sDaHa) and rational double affine Hecke-Clifford algebras (DaHCa) associated to classical Weyl groups are introduced. The basic properties of these algebras such as the PBW basis and Dunkl ope
rator representations are established. An algebra isomorphism relating the rational DaHCa to the rational sDaHa is obtained. We further develop a link between the usual rational Cherednik algebra and the rational sDaHa by introducing a notion of rational covering double affine Hecke algebras.
One of the main goals of these notes is to explain how rotations in reals^n are induced by the action of a certain group, Spin(n), on reals^n, in a way that generalizes the action of the unit complex numbers, U(1), on reals^2, and the action of the u
nit quaternions, SU(2), on reals^3 (i.e., the action is defined in terms of multiplication in a larger algebra containing both the group Spin(n) and reals^n). The group Spin(n), called a spinor group, is defined as a certain subgroup of units of an algebra, Cl_n, the Clifford algebra associated with reals^n. Since the spinor groups are certain well chosen subgroups of units of Clifford algebras, it is necessary to investigate Clifford algebras to get a firm understanding of spinor groups. These notes provide a tutorial on Clifford algebra and the groups Spin and Pin, including a study of the structure of the Clifford algebra Cl_{p, q} associated with a nondegenerate symmetric bilinear form of signature (p, q) and culminating in the beautiful 8-periodicity theorem of Elie Cartan and Raoul Bott (with proofs).