ترغب بنشر مسار تعليمي؟ اضغط هنا

Restricted simple Lie (super)algebras in characteristic $3$

117   0   0.0 ( 0 )
 نشر من قبل Sofiane Bouarroudj
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give explicit formulas proving restrictedness of the following Lie (super)algebras: known exceptional simple vectorial Lie (super)algebras in characteristic 3, deformed Lie (super)algebras with indecomposable Cartan matrix, and (under certain conditions) their simple subquotients over an algebraically closed field of characteristic 3, as well as one type of the deformed divergence-free Lie superalgebras with any number of indeterminates in any characteristic.

قيم البحث

اقرأ أيضاً

A double extension ($mathscr{D}$ extension) of a Lie (super)algebra $mathfrak a$ with a non-degenerate invariant symmetric bilinear form $mathscr{B}$, briefly: a NIS-(super)algebra, is an enlargement of $mathfrak a$ by means of a central extension an d a derivation; the affine Kac-Moody algebras are the best known examples of double extensions of loops algebras. Let $mathfrak a$ be a restricted Lie (super)algebra with a NIS $mathscr{B}$. Suppose $mathfrak a$ has a restricted derivation $mathscr{D}$ such that $mathscr{B}$ is $mathscr{D}$-invariant. We show that the double extension of $mathfrak a$ constructed by means of $mathscr{B}$ and $mathscr{D}$ is restricted. We show that, the other way round, any restricted NIS-(super)algebra with non-trivial center can be obtained as a $mathscr{D}$-extension of another restricted NIS-(super)algebra subject to an extra condition on the central element. We give new examples of $mathscr{D}$-extensions of restricted Lie (super)algebras, and pre-Lie superalgebras indigenous to characteristic 3.
We overview the classifications of simple finite-dimensional modular Lie algebras. In characteristic 2, their list is wider than that in other characteristics; e.g., it contains desuperizations of modular analogs of complex simple vectorial Lie super algebras. We consider odd parameters of deformations. For all 15 Weisfeiler gradings of the 5 exceptional families, and one Weisfeiler grading for each of 2 serial simple complex Lie superalgebras (with 2 exceptional subseries), we describe their characteristic-2 analogs - new simple Lie algebras. Descriptions of several of these analogs, and of their desuperizations, are far from obvious. One of the exceptional simple vectorial Lie algebras is a previously unknown deform (the result of a deformation) of the characteristic-2 version of the Lie algebra of divergence-free vector fields; this is a new simple Lie algebra with no analogs in characteristics distinct from 2. In characteristic 2, every simple Lie superalgebra can be obtained from a simple Lie algebra by one of the two methods described in arXiv:1407.1695. Most of the simple Lie superalgebras thus obtained from simple Lie algebras we describe here are new.
We say that a~Lie (super)algebra is ``symmetric if with every root (with respect to the maximal torus) it has its opposite of the same multiplicity. Over algebraically closed fields of positive characteristics we describe the deforms (results of defo rmations) of all known simple finite-dimensional symmetric Lie (super)algebras of rank $<9$, except for superizations of the Lie algebras with ADE root systems. The moduli of deformations of any Lie superalgebra constitute a supervariety. Any infinitesimal deformation given by any odd cocycle is integrable with an odd parameter running over a~supervariety. All deforms corresponding to odd cocycles are new. Among new results are classification of the deforms of the 29-dimensional Brown algebra in characteristic 3, of Weisfeiler-Kac algebras and orthogonal Lie algebras without Cartan matrix in characteristic 2. For the Lie (super)algebras considered, all cocycles are integrable, the deforms corresponding to the weight cocycles are usually linear in the parameter. Problem: describe isomorphic deforms. Appendix: For several modular analogs of complex simple Lie algebras, and simple Lie algebras indigenous to characteristics 3 and 2, we describe the space of cohomology with trivial coefficients. We show that the natural multiplication in this space is very complicated.
We review the list of non-degenerate invariant (super)symmetric bilinear forms (briefly: NIS) on the following simple (relatives of) Lie (super)algebras: (a) with symmetrizable Cartan matrix of any growth, (b) with non-symmetrizable Cartan matrix of polynomial growth, (c) Lie (super)algebras of vector fields with polynomial coefficients, (d) stringy a.k.a. superconformal superalgebras, (e) queerifications of simple restricted Lie algebras. Over algebraically closed fields of positive characteristic, we establish when the deform (i.e., the result of deformation) of the known finite-dimensional simple Lie (super)algebra has a NIS. Amazingly, in most of the cases considered, if the Lie (super)algebra has a NIS, its deform has a NIS with the same Gram matrix after an identification of bases of the initial and deformed algebras. We do not consider odd parameters of deformations. Closely related with simple Lie (super)algebras with NIS is the notion of doubly extended Lie (super)algebras of which affine Kac--Moody (super)algebras are the most known examples.
Let $min N$, $P(t)in C[t]$. Then we have the Riemann surfaces (commutative algebras) $R_m(P)=C[t^{pm1},u | u^m=P(t)]$ and $S_m(P)=C[t , u| u^m=P(t)].$ The Lie algebras $mathcal{R}_m(P)=Der(R_m(P))$ and $mathcal{S}_m(P)=Der(S_m(P))$ are called the $m$ -th superelliptic Lie algebras associated to $P(t)$. In this paper we determine the necessary and sufficient conditions for such Lie algebras to be simple, and determine their universal central extensions and their derivation algebras. We also study the isomorphism and automorphism problem for these Lie algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا