An argument is given to associate integrable nonintegrable transition of discrete maps with the transition of Lawveres fixed point theorem to its own contrapositive. We show that the classical description of nonlinear maps is neither complete nor totally predictable.
A rational map with good reduction in the field $mathbb{Q}_p$ of $p$-adic numbers defines a $1$-Lipschitz dynamical system on the projective line $mathbb{P}^1(mathbb{Q}_p)$ over $mathbb{Q}_p$. The dynamical structure of such a system is completely de
scribed by a minimal decomposition. That is to say, $mathbb{P}^1(mathbb{Q}_p)$ is decomposed into three parts: finitely many periodic orbits; finite or countably many minimal subsystems each consisting of a finite union of balls; and the attracting basins of periodic orbits and minimal subsystems. For any prime $p$, a criterion of minimality for rational maps with good reduction is obtained. When $p=2$, a condition in terms of the coefficients of the rational map is proved to be necessary for the map being minimal and having good reduction, and sufficient for the map being minimal and $1$-Lipschitz. It is also proved that a rational map having good reduction of degree $2$, $3$ and $4$ can never be minimal on the whole space $mathbb{P}^1(mathbb{Q}_2)$.
We show that the topological entropy is monotonic for unimodal interval maps which are obtained from the restriction of quadratic rational maps with real coefficients. This is done by ruling out the existence of certain post-critical curves in the mo
duli space of aforementioned maps, and confirms a conjecture made in [Fil19] based on experimental evidence.
In 1980s, Thurston established a combinatorial characterization for post-critically finite rational maps. This criterion was then extended by Cui, Jiang, and Sullivan to sub-hyperbolic rational maps. The goal of this paper is to present a new but sim
pler proof of this result by adapting the argument in the proof of Thurstons Theorem.
For general quantum systems the semiclassical behaviour of eigenfunctions in relation to the ergodic properties of the underlying classical system is quite difficult to understand. The Wignerfunctions of eigenstates converge weakly to invariant measu
res of the classical system, the so called quantum limits, and one would like to understand which invariant measures can occur that way, thereby classifying the semiclassical behaviour of eigenfunctions. We introduce a class of maps on the torus for whose quantisations we can understand the set of quantum limits in great detail. In particular we can construct examples of ergodic maps which have singular ergodic measures as quantum limits, and examples of non-ergodic maps where arbitrary convex combinations of absolutely continuous ergodic measures can occur as quantum limits. The maps we quantise are obtained by cutting and stacking.
Recently, an integrable system of coupled (2+1)-dimensional nonlinear Schrodinger (NLS) equations was introduced by Fokas (eq. (18) in Nonlinearity 29}, 319324 (2016)). Following this pattern, two integrable equations [eqs.2 and 3] with specific pari
ty-time symmetry are introduced here, under different reduction conditions. For eq. 2, two kinds of periodic solutions are obtained analytically by means of the Hirotas bilinear method. In the long-wave limit, the two periodic solutions go over into rogue waves (RWs) and semi-rational solutions, respectively. The RWs have a line shape, while the semi-rational states represent RWs built on top of the background of periodic line waves. Similarly, semi-rational solutions consisting of a line RW and line breather are derived. For eq. 3, three kinds of analytical solutions,textit{viz}., breathers, lumps and semi-rational solutions, representing lumps, periodic line waves and breathers are obtained, using the Hirota method. Their dynamics are analyzed and demonstrated by means of three-dimensional plots. It is also worthy to note that eq. 2 can reduce to a (1+1)-dimensional textquotedblleft reverse-space nonlocal NLS equation by means of a certain transformation, Lastly, main differences between solutions of eqs.2 and 3 are summarized.