ﻻ يوجد ملخص باللغة العربية
A rational map with good reduction in the field $mathbb{Q}_p$ of $p$-adic numbers defines a $1$-Lipschitz dynamical system on the projective line $mathbb{P}^1(mathbb{Q}_p)$ over $mathbb{Q}_p$. The dynamical structure of such a system is completely described by a minimal decomposition. That is to say, $mathbb{P}^1(mathbb{Q}_p)$ is decomposed into three parts: finitely many periodic orbits; finite or countably many minimal subsystems each consisting of a finite union of balls; and the attracting basins of periodic orbits and minimal subsystems. For any prime $p$, a criterion of minimality for rational maps with good reduction is obtained. When $p=2$, a condition in terms of the coefficients of the rational map is proved to be necessary for the map being minimal and having good reduction, and sufficient for the map being minimal and $1$-Lipschitz. It is also proved that a rational map having good reduction of degree $2$, $3$ and $4$ can never be minimal on the whole space $mathbb{P}^1(mathbb{Q}_2)$.
We characterize the dynamical systems consisting of the set of 5-adic integers and polynomial maps which consist of only one minimal component.
We describe the set of all $(3,1)$-rational functions given on the set of complex $p$-adic field $mathbb C_p$ and having a unique fixed point. We study $p$-adic dynamical systems generated by such $(3,1)$-rational functions and show that the fixed po
We consider a family of $(2,1)$-rational functions given on the set of $p$-adic field $Q_p$. Each such function has a unique fixed point. We study ergodicity properties of the dynamical systems generated by $(2,1)$-rational functions. For each such f
An argument is given to associate integrable nonintegrable transition of discrete maps with the transition of Lawveres fixed point theorem to its own contrapositive. We show that the classical description of nonlinear maps is neither complete nor totally predictable.
We prove that a long iteration of rational maps is expansive near boundaries of bounded type Siegel disks. This leads us to extend Petersens local connectivity result on the Julia sets of quadratic Siegel polynomials to a general case.