ترغب بنشر مسار تعليمي؟ اضغط هنا

Monotonicity of entropy for unimodal real quadratic rational maps

211   0   0.0 ( 0 )
 نشر من قبل Yan Gao
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Yan Gao




اسأل ChatGPT حول البحث

We show that the topological entropy is monotonic for unimodal interval maps which are obtained from the restriction of quadratic rational maps with real coefficients. This is done by ruling out the existence of certain post-critical curves in the moduli space of aforementioned maps, and confirms a conjecture made in [Fil19] based on experimental evidence.



قيم البحث

اقرأ أيضاً

In this paper we will develop a very general approach which shows that critical relations of holomorphic maps on the complex plane unfold transversally in a positively oriented way. We will mainly illustrate this approach to obtain transversality for a wide class of one-parameter families of interval maps, for example maps with flat critical points, piecewise linear maps, maps with discontinuities but also for families of maps with complex analytic extensions such as certain polynomial-like maps.
We describe an algorithm for distinguishing hyperbolic components in the parameter space of quadratic rational maps with a periodic critical point. We then illustrate computer images of the hyperbolic components of the parameter spaces V1 - V4, which were produced using our algorithm. We also resolve the singularities of the projective closure of V5 by blowups, giving an alternative proof that as an algebraic curve, the geometric genus of V5 is 1. This explains why we are unable to produce an image for V5.
72 - Hiroki Takahasi 2020
For an infinitely renormalizable negative Schwarzian unimodal map $f$ with non-flat critical point, we analyze statistical properties of periodic points as the periods tend to infinity. Introducing a weight function $varphi$ which is a continuous or a geometric potential $varphi=-betalog|f|$ ($betainmathbb R$), we establish the level-2 Large Deviation Principle for weighted periodic points. From this, we deduce that all weighted periodic points equidistribute with respect to equilibrium states for the potential $varphi$. In particular, it follows that all periodic points are equidistributed with respect to measures of maximal entropy, and all periodic points weighted with their Lyapunov exponents are equidistributed with respect to the post-critical measure supported on the attracting Cantor set.
We show that the connectedness of the set of parameters for which the over-rotation interval of a bimodal interval map is constant. In other words, the over-rotation interval is a monotone function of a bimodal interval map.
238 - John R. Doyle 2017
Motivated by the dynamical uniform boundedness conjecture of Morton and Silverman, specifically in the case of quadratic polynomials, we give a formal construction of a certain class of dynamical analogues of classical modular curves. The preperiodic points for a quadratic polynomial map may be endowed with the structure of a directed graph satisfying certain strict conditions; we call such a graph admissible. Given an admissible graph $G$, we construct a curve $X_1(G)$ whose points parametrize quadratic polynomial maps -- which, up to equivalence, form a one-parameter family -- together with a collection of marked preperiodic points that form a graph isomorphic to $G$. Building on work of Bousch and Morton, we show that these curves are irreducible in characteristic zero, and we give an application of irreducibility in the setting of number fields. We end with a discussion of the Galois theory associated to the preperiodic points of quadratic polynomials, including a certain Galois representation that arises naturally in this setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا