ﻻ يوجد ملخص باللغة العربية
We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately ten meters. Electron beam simulations from cathode emission through diffraction, acceleration and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.
An optics-free method is proposed to generate X-ray radiation with spatially variant states of polarization via an afterburner extension to a Free Electron Laser (FEL). Control of the polarization in the transverse plane is obtained through the overl
One of the challenge of future muon colliders is the production of muon beams carrying high phase space densities. In particular the muon beam normalised transverse emittance is a relevant figure of merit to meet luminosity requests. A typical issue
Present availability of high brilliance photon beams as those produced by X-ray Free Electron Lasers in combination with intense TeV proton beams typical of the Large Hadron Collider makes it possible to conceive the generation of pion beams via phot
Ultracold atom-based electron sources have recently been proposed as an alternative to the conventional photo-injectors or thermionic electron guns widely used in modern particle accelerators. The advantages of ultracold atom-based electron sources l
In this paper, we report results of simulations, in the framework of both EuPRAXIA cite{Walk2017} and EuPRAXIA@SPARC_LAB cite{Ferr2017} projects, aimed at delivering a high brightness electron bunch for driving a Free Electron Laser (FEL) by employin