ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotics of mean-field $O(N)$ models

118   0   0.0 ( 0 )
 نشر من قبل Tayyab Nawaz
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study mean-field classical $N$-vector models, for integers $Nge 2$. We use the theory of large deviations and Steins method to study the total spin and its typical behavior, specifically obtaining non-normal limit theorems at the critical temperatures and central limit theorems away from criticality. Important special cases of these models are the XY ($N=2$) model of superconductors, the Heisenberg ($N=3$) model (previously studied in cite{KM} but with a correction to the critical distribution here), and the Toy ($N=4$) model of the Higgs sector in particle physics.



قيم البحث

اقرأ أيضاً

We consider the mean-field classical Heisenberg model and obtain detailed information about the total spin of the system by studying the model on a complete graph and sending the number of vertices to infinity. In particular, we obtain Cramer- and Sa nov-type large deviations principles for the total spin and the empirical spin distribution and demonstrate a second-order phase transition in the Gibbs measures. We also study the asymptotics of the total spin throughout the phase transition using Steins method, proving central limit theorems in the sub- and supercritical phases and a nonnormal limit theorem at the critical temperature.
Using conformal field theoretic methods we calculate correlation functions of geometric observables in the loop representation of the O(n) model at the critical point. We focus on correlation functions containing twist operators, combining these with anchored loops, boundaries with SLE processes and with double SLE processes. We focus further upon n=0, representing self-avoiding loops, which corresponds to a logarithmic conformal field theory (LCFT) with c=0. In this limit the twist operator plays the role of a zero weight indicator operator, which we verify by comparison with known examples. Using the additional conditions imposed by the twist operator null-states, we derive a new explicit result for the probabilities that an SLE_{8/3} wind in various ways about two points in the upper half plane, e.g. that the SLE passes to the left of both points. The collection of c=0 logarithmic CFT operators that we use deriving the winding probabilities is novel, highlighting a potential incompatibility caused by the presence of two distinct logarithmic partners to the stress tensor within the theory. We provide evidence that both partners do appear in the theory, one in the bulk and one on the boundary and that the incompatibility is resolved by restrictive bulk-boundary fusion rules.
We construct the exact partition function of the Potts model on a complete graph subject to external fields with linear and nematic type couplings. The partition function is obtained as a solution to a linear diffusion equation and the free energy, i n the thermodynamic limit, follows from its semiclassical limit. Analysis of singularities of the equations of state reveals the occurrence of phase transitions of nematic type at not zero external fields and allows for an interpretation of the phase transitions in terms of shock dynamics in the space of thermodynamics variables. The approach is shown at work in the case of a q-state model for q=3 but the method generalises to arbitrary q.
We consider the $n$-component $|varphi|^4$ lattice spin model ($n ge 1$) and the weakly self-avoiding walk ($n=0$) on $mathbb{Z}^d$, in dimensions $d=1,2,3$. We study long-range models based on the fractional Laplacian, with spin-spin interactions or walk step probabilities decaying with distance $r$ as $r^{-(d+alpha)}$ with $alpha in (0,2)$. The upper critical dimension is $d_c=2alpha$. For $epsilon >0$, and $alpha = frac 12 (d+epsilon)$, the dimension $d=d_c-epsilon$ is below the upper critical dimension. For small $epsilon$, weak coupling, and all integers $n ge 0$, we prove that the two-point function at the critical point decays with distance as $r^{-(d-alpha)}$. This sticking of the critical exponent at its mean-field value was first predicted in the physics literature in 1972. Our proof is based on a rigorous renormalisation group method. The treatment of observables differs from that used in recent work on the nearest-neighbour 4-dimensional case, via our use of a cluster expansion.
We review some recent developments in the study of Gibbs and non-Gibbs properties of transformed n-vector lattice and mean-field models under various transformations. Also, some new results for the loss and recovery of the Gibbs property of planar ro tor models during stochastic time evolution are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا