ﻻ يوجد ملخص باللغة العربية
Using conformal field theoretic methods we calculate correlation functions of geometric observables in the loop representation of the O(n) model at the critical point. We focus on correlation functions containing twist operators, combining these with anchored loops, boundaries with SLE processes and with double SLE processes. We focus further upon n=0, representing self-avoiding loops, which corresponds to a logarithmic conformal field theory (LCFT) with c=0. In this limit the twist operator plays the role of a zero weight indicator operator, which we verify by comparison with known examples. Using the additional conditions imposed by the twist operator null-states, we derive a new explicit result for the probabilities that an SLE_{8/3} wind in various ways about two points in the upper half plane, e.g. that the SLE passes to the left of both points. The collection of c=0 logarithmic CFT operators that we use deriving the winding probabilities is novel, highlighting a potential incompatibility caused by the presence of two distinct logarithmic partners to the stress tensor within the theory. We provide evidence that both partners do appear in the theory, one in the bulk and one on the boundary and that the incompatibility is resolved by restrictive bulk-boundary fusion rules.
The O(n) spin model in two dimensions may equivalently be formulated as a loop model, and then mapped to a height model which is conjectured to flow under the renormalization group to a conformal field theory (CFT). At the critical point, the order n
We study mean-field classical $N$-vector models, for integers $Nge 2$. We use the theory of large deviations and Steins method to study the total spin and its typical behavior, specifically obtaining non-normal limit theorems at the critical temperat
In this note we consider non-equilibrium steady states of one-dimensional models of heat conduction (wealth exchange) which are coupled to some reservoirs creating currents. In particular we will give sufficient and necessary conditions which will de
We compute analytically and in closed form the four-point correlation function in the plane, and the two-point correlation function in the upper half-plane, of layering vertex operators in the two dimensional conformally invariant system known as the
We consider the $n$-component $|varphi|^4$ lattice spin model ($n ge 1$) and the weakly self-avoiding walk ($n=0$) on $mathbb{Z}^d$, in dimensions $d=1,2,3$. We study long-range models based on the fractional Laplacian, with spin-spin interactions or